首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang YS  Tsai CC  Liu JT  Lin CH 《Electrophoresis》2005,26(20):3904-3909
A comparison of the use of aqueous and nonaqueous buffers in association with beta-CD for the chiral separation of (R)- and (S)-3,4-methylenedioxymethamphetamine and related compounds is described. The (R)- and (S)-isomers of 3,4-methylenedioxymethamphetamine (MDMA) and its major metabolite 3,4-methylenedioxyamphetamine (MDA) were prepared. Under aqueous and nonaqueous buffer conditions and based on the CZE and MEKC modes, the order of migration of (R)-MDA, (S)-MDA, (R)-MDMA, and the (S)-MDMA enantioisomers were determined. Several electrophoretic parameters, including the concentration of beta-CD (aqueous, 25-60 mM; nonaqueous, 20-150 mM) used in the electrophoretic separation and the amount of organic solvents required for the separation, were optimized.  相似文献   

2.
In nonaqueous capillary electrophoresis (NACE), an organic solvent is used in place of an aqueous medium as the background solution to improve the solubility and selectivity for hydrophobic analytes. In this study, we employed NACE with UV detection for the analysis of eight calix[4]arenes. We examined the influence of several parameters—the buffer composition, the nonaqueous solvent‘s composition and proportion, and the concentration of the electrolyte of the nonaqueous buffer—on the efficiency of the electrophoretic separation. The separation was achieved through the analyte's different effective mobility via different degrees of deprotonation on the phenolic OH groups of the calix[4]arene. This deprotonation can further affect the analyte's ability to form a complex with the metal ion. The optimized background electrolyte (BGE), comprising a mixture of N‐methylformamide/acetonitrile (30:70, v/v) and 100 mM AcOH/20 mM NH4OAc, provided rapid (<11 min) separation of the calix[4]arenes with good resolution. The relative standard deviations of the migration times for the eight analytes were all less than 1%. Within the calibration concentration range, the coefficients of determination (R2) were all greater than 0.9914. Thus, the present study demonstrated NACE can provide adequate separation for the analysis of calix[4]arenes.  相似文献   

3.
Summary Micellar electrokinetic capillary chromatography was applied to the simultaneous analysis of six tropane alkaloids, including hyoscyamine and scopolamine. Successful results were obtained using a 30 mM boratephosphate buffer at basic pH (8.5) in the presence of 50 mM sodium dodecyl sulfate. The operating conditions, such as buffer concentration and pH, micelle concentration and organic modifier type and percentage were also discussed on the basis of the results given with a tropane alkaloid mixture. Addition of organic modifiers showed an improvement in separation efficiency and resolution. Moreover, hyoscyamine and littorine, two positional isomers, were only resolved by the addition of organic solvents such as methanol or acetonitrile. The optimized conditions were finally applied to the analysis of tropane alkaloids found in genetically transformed root cultures ofDatura candida x D. aurea. Dedicated to Professor Werner Haerdi on the occasion of his 70th birthday.  相似文献   

4.
In this study, nonaqueous capillary electrophoresis (NACE) was used to separate three open-cage fullerenes. Trifluoroacetic acid (TFA) was used as the nonaqueous background electrolyte to change the analytes’ mobilities. The selectivity and separation efficiency were critically affected by the nature of the buffer system, the choice of organic solvent, and the concentrations of TFA and sodium acetate (NaOAc) in the background electrolyte. The optimized separation occurred using 200 mM TFA/20 mM NaOAc in MeOH/acetonitrile (10:90, v/v), providing highly efficient baseline separation of the open-cage fullerenes within 5 min. The migration time repeatability for the three analytes was less than 1% (relative standard deviation). Thus, NACE is a rapid, useful alternative to high-performance liquid chromatography for the separation of open-cage fullerenes.  相似文献   

5.
Nonaqueous solvents are interesting media for capillary zone electrophoresis as they can affect all relevant parameters governing the separation of sample zones. However, for a rational planning of the working conditions and an appropriate interpretation of the results obtained, the basic principles of ion migration and zone dispersion must be understood. Many solvent induced effects need to be carefully considered and recognized before full exploitation of nonaqueous solvents can take place. It is the goal of this overview to present the fundamental physicochemical aspects of capillary zone electrophoresis in nonaqueous solvent systems. Therefore, the detailed discussion is related to the effect of organic solvents on electrophoretic mobilities (based on the theory of conductance), acid-base dissociation behavior (based on the transfer activity coefficient and medium effect), pH, separation efficiency (with regard to mobility and diffusion coefficient in dilute solutions), resolution, and electroosmotic flow.  相似文献   

6.
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump‐free negative pressure sampling device was used for rapid bias‐free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump‐free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.  相似文献   

7.
Nonaqueous capillary electrophoresis with mass spectrometry has advantages for the analysis of active components in herbs. Here, a rapid nonaqueous capillary electrophoresis with mass spectrometry method was developed to separate, identify, and quantify palmatin, columbin, cepharanthine, menisperine, magnoflorine, and 20‐hydroxyecdysone in Radix tinosporae . Electrospray ionization MS1‐3 spectra of the six components were collected and possible cleavage pathways of main fragment ions were elucidated. The conditions that could affect separation, such as the composition of running buffer and applied voltage, were studied, and the conditions that could affect the mass spectrometry detection, such as the composition and flow rate of sheath liquid, the pressure of nitrogen gas, and the temperature and flow rate of the dry gas, were also optimized. Under the optimized conditions, the correlation coefficient was >0.99. The relative standard deviations of migration time and peak areas were <10%. The recoveries were calculated to be 99.31–107.80% in real samples. It has been demonstrated that the proposed method has good potential to be applied to determine the six bioactive components in Radix tinosporae .  相似文献   

8.
Summary An automated pre-column derivatisation system is presented. As an example of its application we have chosen ion-pair partition chromatography. Ion-pairs of a mixture of some alkaloids (apoatropine, hyoscyamine, scopolamine and ergotamine) were formed with picric acid in an aqueous phase, extracted into chloroform and injectedin-situ onto a silica gel column for separation within 15 minutes.This paper shows the possibility of making an automated pre-column derivatisation system with a relative standard deviation of less than 3% per injection (n=6). The linearity check was made for hyoscyamine and ergotamine solutions in the concentration range of 80 to 200 ng respectively 240 to 720 ng per injection and found to be linear. The information obtained is of general validity and could generate more studies in this area.  相似文献   

9.
The Amaryllidaceae are widely distributed medical plants. Lycorine, lycoramine, lycoremine, and lycobetaine are the major active alkaloids in Amaryllidaceae plants. A nonaqueous CE ESI‐IT‐MS method for separation, identification, and quantification of the Amaryllidaceae alkaloids has been developed. The MS1–3 behavior has been studied and the fragmentation pathways of main fragment ions have been proposed. The effects of several factors such as composition and concentration of buffer, applied voltage, composition, and flow rate of the sheath liquid, nebulizing gas pressure, flow rate, and temperature of drying gas were investigated. Under the optimal conditions, the linear concentration range of these compounds was wide with the correlation coefficient (R2) >0.99. RSDs of migration time and peak areas were <10%. The LODs were <240 ng/mL. The proposed method can be successfully applied to the determination of the related alkaloids in the Lycoris radiata roots.  相似文献   

10.
非水毛细管电泳测定黄连饮片中5种生物碱   总被引:1,自引:0,他引:1  
建立了一种非水毛细管电泳(NACE)同时测定黄连饮片生品与炮制品中小檗碱、巴马汀、药根碱、木兰碱和黄连碱含量的方法。分别考察了非水溶剂、缓冲液体系及其浓度和pH、运行电压、运行温度和检测波长等条件对实验结果的影响。在优化的实验条件下,选择非水毛细管电泳分离模式,以40 mmol/L乙酸钠-40 mmol/L乙酸铵的无水甲醇缓冲溶液(pH 5.8)为电泳介质,未涂渍标准熔融石英毛细管(64.5 cm×75 μm,有效长度56 cm)为分离通道,检测波长为254 nm,分离电压为25 kV,压力进样(5 kPa×6 s),柱温为20 ℃。结果显示,5种生物碱在20 min内可实现基线分离,加标回收率为98.37%~101.03%。该方法简单、准确,重现性较好,可用于黄连饮片内在质量的评价和控制。  相似文献   

11.
Zhou L  Wang W  Wang S  Hui Y  Luo Z  Hu Z 《Analytica chimica acta》2008,611(2):212-219
A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20 mM sodium tetraborate, 20 mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20 mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail.  相似文献   

12.
This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability.  相似文献   

13.
The CE separation of alpha-helical polypeptides composed of 14-31 amino acid residues has been investigated using aqueous and nonaqueous BGEs. The running buffers were optimized with respect to pH. Generally, higher separation selectivities were observed in nonaqueous electrolytes. This may be explained by a change in the secondary structure when changing from water to organic solvents. Circular dichroism spectra revealed a significant increase in helical structures in methanol-based buffers compared to aqueous buffers. This change in secondary structure of the polypeptides contributed primarily to the different separation selectivity observed in aqueous CE and NACE. For small oligopeptides of two to five amino acid residues no significant effect of the solvent was observed in some cases while in other cases a reversal of the migration order occurred when changing from aqueous to nonaqueous buffers. As these peptides cannot adopt secondary structures the effect may be attributed to a shift of the pKa values in organic solvents compared to water.  相似文献   

14.
Enantiomer separations by CE employing nonaqueous conditions are reviewed. The general focus of this article is directed towards solvent effects on chiral recognition and the separation mechanism. After a general discussion of solvent effects on the individual processes involved in CE enantiomer separation, specifics for various selector classes are discussed together with a few applications of enantioselective nonaqueous CE.  相似文献   

15.
Peng ZL  Qu F  Song G  Lin JM 《Electrophoresis》2005,26(17):3333-3340
A simple and rapid nonaqueous capillary electrophoresis method for simultaneous separation of four kinds of mercury species, namely inorganic mercury, methylmercury, ethylmercury, and phenylmercury, is reported. The effective mobilities of organomercury in aqueous and nonaqueous electrolytes were compared. Imidazole was confirmed not only as a co-ion for the separation but also as an online complexing reagent for mercury species. The optimum conditions for separation were achieved by using methanol solvent containing 0.15 M acetic acid and 15 mM imidazole as electrolyte. The sensitive detection of mercury species was accomplished at 191 nm.  相似文献   

16.
采用非水毛细管电泳方法对2’-AMP、3’-AMP和5’-AMP 3种单磷酸腺苷进行分离研究,考察了电泳溶液pH*值、非水介质、缓冲溶液对分离的影响。以含50%乙腈的Tris-H3BO3体系为缓冲溶液,在pH*10.0、压差进样(50 mbar,5 s)、柱温25℃、25 kV恒压下进行分离,在波长260 nm处负极检测,各组分可达到基线分离。在质量浓度为1~100 mg/L范围内,3种单磷酸腺苷的线性关系良好,平均回收率为88%~106%,RSD小于4%。该方法应用于核苷样品的测定,结果满意。  相似文献   

17.
On-chip capillary electrophoresis with uncoated and polyvinyl alcohol-coated glass channels in aqueous and nonaqueous dimethyl sulfoxide (DMSO) background electrolyte (BGE) solutions was applied in the separation of five amines derivatized with fluorescein-5-isothiocyanate. In aqueous BGE at pH 9.2, baseline separation of the analytes was not achieved on uncoated glass chips, but the separation was clearly improved when the chip channels were coated with polyvinyl alcohol (PVA). Separation was successful in nonaqueous DMSO electrolyte solution containing ammonium acetate and sodium methoxide, on both uncoated and PVA-coated glass microchips. The differences in the pK(a) values of analytes were probably amplified in DMSO, and all five analytes were at least partly dissociated and were separated. Because the viscosity of DMSO is higher than that of water, the migration times were longer in DMSO.  相似文献   

18.
Li Q  Chang CK  Huie CW 《Electrophoresis》2005,26(17):3349-3359
The effects of organic solvents on the capillary electrophoresis (CE) separation of a number of important biological porphyrin methyl esters - six weakly basic, hydrophobic cyclic tetrapyrroles possessing two and four to eight methyl ester groups around the periphery of the porphyrin ring - were investigated in the mode of micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic chromatography (MEEKC), and nonaqueous CE. In aqueous MEKC, partial separation of the six neutral porphyrin methyl esters was obtained with an organic modifier (acetonitrile) in the concentration range between 20 and 40%, in which sodium dodecyl sulfate (SDS) molecules might be present in the form of SDS micelles and/or SDS micelle-like aggregates. Relatively stable SDS micelles can be formed in nonaqueous MEKC using formamide as the separation medium, but the separation of the target analytes remained unsatisfactory. Improved resolution of all six porphyrin methyl esters was obtained using MEEKC with the running buffer consisting of 0.8% w/w n-heptane (oil phase), 2.25% w/w SDS and 1.0% w/w Brij 35 (mixed surfactant), 6.6% w/w 1-butanol (cosurfactant), and 30% v/v 2-propanol (second cosurfactant), but reproducibility in terms of peak areas for certain porphyrins (especially uroporphyrin I octamethyl ester) was found to be very poor. Best separation performances were achieved with nonaqueous CE separations in which the weakly basic porphyrin methyl esters were protonated under strongly acidic conditions (e.g., using 10 mM perchloric acid) in mixed organic solvents. For example, using a 50:50 mixture of methanol and acetonitrile as the separation medium, baseline separation of all six (positively charged) porphyrin methyl esters can be obtained within 3 min and the average precision (RSD, N = 13) in terms of migration time and peak area were 0.55 and 2.16%, respectively.  相似文献   

19.
A method has been developed for the separation and determination of phospholipids by nonaqueous capillary electrophoresis in a separation medium of acetonitrile-2-proponol (3:2, v/v), 0.3% acetic acid and 60 mM ammonium acetate. To optimize the separation conditions, the composition of separation medium including alcohols, acetic acid, n-hexane and ammonium acetate was studied. The solvation interaction and ion-dipole interaction were also investigated. The contents of phospholipids in soybean, sunflower, peanut, apricot kernel, filbert and walnut were determined by the recommended method. The results obtained by the nonaqueous capillary electrophoreses were in good agreement with those determined by micellar electrokinetic chromatography.  相似文献   

20.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号