首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoelectron images are recorded in the photodetachment of two series of cluster anions, (CO(2))(n)(-), n=4-9 and (CO(2))(n)(-).H(2)O, n=2-7, with linearly polarized 400 nm light. The energetics of the observed photodetachment bands compare well with previous studies, showing evidence for switching between two anionic core structures: The CO(2)(-) monomer and covalent (CO(2))(2)(-) dimer anions. The systematic study of photoelectron angular distributions (PADs) sheds light on the electronic structure of the different core anions and indicates that solvation by several CO(2) molecules and/or one water molecule has only moderate effect on the excess-electron orbitals. The observed PAD character is reconciled with the symmetry properties of the parent molecular orbitals. The most intriguing result concerns the PADs showing remarkable similarities between the monomer and dimer anion cluster-core types. This observation is explained by treating the highest-occupied molecular orbital of the covalent dimer anion as a linear combination of two spatially separated monomeric orbitals.  相似文献   

2.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

3.
We report the vibrational predissociation spectrum of C(5)H(5)N-CO(2)(-), a radical anion which is closely related to the key intermediates postulated to control activation of CO(2) in photoelectrocatalysis with pyridine (Py). The anion is prepared by the reaction of Py vapor with (CO(2))(m)(-) clusters carried out in an ionized, supersonic entrainment ion source. Comparison with the results of harmonic frequency calculations establishes that this species is a covalently bound molecular anion derived from the corresponding carbamate, C(5)H(5)N-CO(2)(-) (H(+)). These results confirm the structural assignment inferred in an earlier analysis of the cluster distributions and photoelectron spectra of the mixed Py(m)(CO(2))(n)(-) complexes [J. Chem. Phys. 2000, 113 (2), 596-601]. The spectra of the (CO(2))(m)(-) (m = 5 and 7) clusters are presented for the first time in the lower energy range (1000-2400 cm(-1)), which reveal several of the fundamental modes that had only been characterized previously by their overtones and combination bands. Comparison of these new spectra with those displayed by Py(CO(2))(n)(-) suggests that a small fraction of the Py(CO(2))(n)(-) ions are trapped entrance channel reaction intermediates in which the charge remains localized on the (CO(2))(m)(-) part of the cluster.  相似文献   

4.
We report the observation of hydrated adenine anions, A(-)(H(2)O)(n), n=1-7, and their study by anion photoelectron spectroscopy. Values for photoelectron threshold energies, E(T), and vertical detachment energies are tabulated for A(-)(H(2)O)(n) along with those for hydrated uracil anions, U(-)(H(2)O)(n), which are presented for comparison. Analysis of these and previously measured photoelectron spectra of hydrated nucleobase anions leads to the conclusion that threshold energies significantly overstate electron affinity values in these cases, and that extrapolation of hydrated nucleobase anion threshold values to n=0 leads to incorrect electron affinity values for the nucleobases themselves. Sequential shifts between spectra, however, lead to the conclusion that A(-)(H(2)O)(3) is likely to be the smallest adiabatically stable, hydrated adenine anion.  相似文献   

5.
Hydroperoxide anion (HOO(-)), the conjugate base of hydrogen peroxide (HOOH), has been relatively little studied despite the importance of HOOH in commercial processes, atmospheric science, and biology. The anion has been shown to exist as a stable species in alkaline water. This project explored the structure of gas phase (HOO(-))(H(2)O)(n) clusters and identified the lowest energy configurations for n ≤ 8 at the B3LYP/6-311++G** level of theory and for n ≤ 6 at the MP2/aug-cc-pVTZ level of theory. As a start toward understanding equilibration between HOO(-) and HOOH in an alkaline environment, (HOOH)(OH(-))(H(2)O)(n-1) clusters were likewise examined, and the lowest energy configurations were determined for n ≤ 8 (B3LYP/6-311++G**) and n ≤ 6 (MP2/aug-cc-pVTZ). Some studies were also done for n = 20. The two species have very different solvation behaviors. In low energy (HOOH)(OH(-))(H(2)O)(n-1) clusters, HOOH sits on the surface of the cluster, is 4-coordinated (each O is donor once and acceptor once), and donates to the hydroxide ion. In contrast, in low energy (HOO(-))(H(2)O)(n) clusters, (HOO(-)) takes a position in the cluster center surrounded on all sides by water molecules, and its optimum coordination number appears to be 7 (one O is donor-acceptor-acceptor while the other is a 4-fold acceptor). For n ≤ 6 the lowest (HOOH)(OH(-))(H(2)O)(n-1) cluster lies 1.0-2.1 kcal/mol below the lowest (HOO(-))(H(2)O)(n) cluster, but the lowest clusters found for n = 20 favor (HOO(-))(H(2)O)(20). The results suggest that ambient water could act as a substantial kinetic brake that slows equilibration between (HOOH)(OH(-)) and (HOO(-))(H(2)O) because extensive rearrangement of solvation shells is necessary to restabilize either species after proton transfer.  相似文献   

6.
The electronic structure and photochemistry of the O(2n)(-)(H(2)O)(m), n = 1-6, m = 0-1 cluster anions is investigated at 532 nm using photoelectron imaging and photofragment mass-spectroscopy. The results indicate that both pure oxygen clusters and their hydrated counterparts with n ≥ 2 form an O(4)(-) core. Fragmentation of these clusters yields predominantly O(2)(-) and O(2)(-)·H(2)O anionic products, with the addition of O(4)(-) fragments for larger parent clusters. The fragment autodetachment patterns observed for O(6)(-) and larger O(2n)(-) species, as well as some of their hydrated counterparts, indicate that the corresponding O(2)(-) fragments are formed in excited vibrational states (v ≥ 4). Yet, surprisingly, the unsolvated O(4)(-) anion itself does not show fragment autodetachment at 532 nm. It is hypothesized that the vibrationally excited O(2)(-) is formed in the intra-cluster photodissociation of the O(4)(-) core anion via a charge-hopping electronic relaxation mechanism mediated by asymmetric solvation of the nascent photofragments: O(4)(-) → O(2)(-)(X(2)Π(g)) + O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) + O(2)(-)(X(2)Π(g)). This process depends on the presence of solvent molecules and leads to vibrationally excited O(2)(-)(X(2)Π(g)) products.  相似文献   

7.
We investigated the reactions between cobalt-oxides and water molecules using photoelectron spectroscopy and density functional calculations. It has been confirmed by both experimental observation and theoretical calculations that dihydroxide anions, Co(m)(OH)(2)(-) (m = 1-3), were formed when Co(m)O(-) clusters interact with the first water molecule. Addition of more water molecules produced solvated dihydroxide anions, Co(m)(OH)(2)(H(2)O)(n)(-) (m = 1-3). Hydrated dihydroxide anions, Co(m)(OH)(2)(H(2)O)(n)(-), are more stable than their corresponding hydrated metal-oxide anions, Co(m)O(H(2)O)(n+1)(-).  相似文献   

8.
Homoleptic copper(I) and silver(I) complexes [M(n)(L-L)(2)(n)()](BF(4))(n)() (M = Cu or Ag; L-L = MeECH(2)EMe; E = S, Se or Te) have been prepared and characterized by analysis, FAB mass spectrometry, and IR and multinuclear NMR spectroscopy ((1)H, (77)Se, (125)Te, (63)Cu and (109)Ag). The single-crystal X-ray structures of [Cu(n)()(MeSeCH(2)SeMe)(2)(n)()](PF(6))(n)() (orthorhombic, P2(1)2(1)2(1), a = 10.879(7) ?, b = 16.073(7) ?, c = 9.19(1) ?, Z = 4) and [Ag(n)()(MeSeCH(2)SeMe)(2)(n)()](BF(4))(n)() (monoclinic, P2(1)/c, a = 14.546(9) ?, b = 14.65(1) ?, c = 30.203(9) ?, Z = 4) reveal extended three-dimensional cationic frameworks in the solid state which contain large cylindrical or rectangular channels accommodating the PF(6)(-) or BF(4)(-) counterions. In contrast, a single-crystal X-ray structure of [Cu(n)()(MeSCH(2)SMe)(2)(n)()](PF(6))(n)().nMeNO(2) (orthorhombic, Pbcn, a = 15.506(3) ?, b = 8.934(2) ?, c = 25.859(3) ?, Z = 8) shows tetrahedral Cu(I) ions coordinated to bridging dithioethers forming an cationic ribbon-like arrangement of 8-membered rings. Adjacent rings are linked by the Cu atoms. Variable temperature NMR studies have been used to probe various exchange processes occurring in solution in these systems.  相似文献   

9.
The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.  相似文献   

10.
Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described.  相似文献   

11.
Mass spectrometry and photoelectron spectroscopy together with first principles theoretical calculations have been used to study the electronic and geometric properties of the following sodium-tin, cluster anion/neutral cluster combinations, (Na(n)Sn(4))(-)/(Na(n)Sn(4)), n = 0-4 and (NaSn(m))(-)/(NaSn(m)), m = 4-7. These synergistic studies found that specific Zintl anions, which are known to occur in condensed Zintl phases, also exist as stable moieties within free clusters. In particular, the cluster anion, (Na(3)Sn(4))(-) is very stable and is characterized as (Na(+))(3)(Sn(4))(-4); its moiety, (Sn(4))(-4) is a classic example of a Zintl anion. In addition, the cluster anion, (NaSn(5))(-) was the most abundant species to be observed in our mass spectrum, and it is characterized as Na(+)(Sn(5))(2-). Its moiety, (Sn(5))(2-) is also known to be present as a Zintl anion in condensed phases.  相似文献   

12.
The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.  相似文献   

13.
The synthesis of two high nuclearity lanthanoid clusters demonstrates the versatility of the carbonate anion as a robust cluster forming agent, potentially allowing for the formation of otherwise inaccessible core topologies. The complexes, [Gd(14)(CO(3))(13)(ccnm)(9)(OH)(H(2)O)(6)(phen)(13)(NO(3))](CO(3))(2.5)·(phen)(0.5) () and [Dy(14)(CO(3))(13)(ccnm)(10)(OH)(H(2)O)(6)(phen)(13)](CO(3))(2.5)·(phen)(0.5) () (ccnm = carbamoylcyanonitrosomethanide, phen = 1,10-phenanthroline), contain a [Ln(14)(CO(3))(13)(OH)] core in which the carbonate anions display four unique coordination modes. The complexes are chiral, and the ccnm ligands also display four unique coordination modes. Extensive intra- and intermolecular π-π stacking between phen ligands leads to the formation of 1D chains in the crystal structure. Both complexes display magnetic properties that are indicative of antiferromagnetic coupling, with complex displaying behaviour consistent with possible single molecule magnet properties.  相似文献   

14.
The reaction between equimolar amounts of Pt(3)(mu-PBu(t)()(2))(3)(H)(CO)(2), Pt(3)()H, and CF(3)SO(3)H under CO atmosphere affords the triangular species [Pt(3)(mu-PBu(t)()(2))(3)(CO)(3)]X, [Pt(3)()(CO)(3)()(+)()]X (X = CF(3)SO(3)(-)), characterized by X-ray crystallography, or in an excess of acid, [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)]X(2), [Pt(6)()(2+)()]X(2)(). Structural determination shows the latter to be a rare hexanuclear cluster with a Pt(4) tetrahedral core formed by joining the unbridged sides of two orthogonal Pt(3) triangles. The dication Pt(6)()(2+)() features also extensive redox properties as it undergoes two reversible one-electron reductions to the congeners [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)](+) (Pt(6)()(+)(), E(1/2) = -0.27 V) and Pt(6)(mu-PBu(t)()(2))(4)(CO)(6) (Pt(6)(), E(1/2) = -0.54 V) and a further quasi-reversible two-electron reduction to the unstable dianion Pt(6)()(2)()(-)() (E(1/2) = -1.72 V). The stable radical (Pt(6)()(+)()) and diamagnetic (Pt(6)()) species are also formed via chemical methods by using 1 or 2 equiv of Cp(2)Co, respectively; further reduction of Pt(6)()(2+)() causes fast decomposition. The chloride derivatives [Pt(6)(mu-PBu(t)()(2))(4)(CO)(5)Cl]X, (Pt(6)()Cl(+)())X, and Pt(6)(mu-PBu(t)()(2))(4)(CO)(4)Cl(2), Pt(6)()Cl(2)(), observed as side-products in some electrochemical experiments, were prepared independently. The reaction leading to Pt(3)()(CO)(3)()(+)() has been analyzed with DFT methods, and identification of key intermediates allows outlining the reaction mechanism. Moreover, calculations for the whole series Pt(6)()(2+)() --> Pt(6)()(2)()(-)()( )()afford the otherwise unknown structures of the reduced derivatives. While the primary geometry is maintained by increasing electron population, the system undergoes progressive and concerted out-of-plane rotation of the four phosphido bridges (from D(2)(d)() to D(2) symmetry). The bonding at the central Pt(4) tetrahedron of the hexanuclear clusters (an example of 4c-2e(-) inorganic tetrahedral aromaticity in Pt(6)()(2+)()) is explained in simple MO terms.  相似文献   

15.
The photodetachment of the O(2)(-).H(2)O cluster anion at 780 and 390 nm is investigated in comparison with O(2)(-) using photoelectron imaging spectroscopy. Despite the pronounced shift in the photoelectron spectra, the monohydration has little effect on the photoelectron angular distributions: for a given wavelength and electron kinetic energy (eKE) range, the O(2)(-).H(2)O angular distributions are quantitatively similar to those for bare O(2)(-). This observation confirms that the excess electron in O(2)(-).H(2)O retains the overall character of the 2ppi(g) HOMO of O(2)(-). The presence of H(2)O does not affect significantly the partial wave composition of the photodetached electrons at a given eKE. An exception is observed for slow electrons, where O(2)(-).H(2)O exhibits a faster rise in the photodetachment signal with increasing eKE, as compared to O(2)(-). The possible causes of this anomaly are (i) the long-range charge-dipole interaction between the departing electron and the neutral O(2).H(2)O skeleton affecting the slow-electron dynamics; and (ii) the s wave contributions to the photodetachment, which are dipole-forbidden for pi(g)(-1) transitions in O(2)(-), but formally allowed in O(2)(-).H(2)O due to lower symmetry of the cluster anion and the corresponding HOMO.  相似文献   

16.
The structures of three closely related heterodimetallic cyano complexes, [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3), formed in reactions between [Pt(II)(CN)(4)](2)(-) and Tl(III) cyano complexes, have been studied in aqueous solution. Multinuclear NMR data ((205)Tl, (195)Pt, and (13)C) were used for identification and quantitative analysis. X-ray absorption spectra were recorded at the Pt and Tl L(III) edges. The EXAFS data show, after developing a model describing the extensive multiple scattering within the linearly coordinated cyano ligands, short Pt-Tl bond distances in the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes: 2.60(1), 2.62(1), and 2.64(1) A for n = 1-3, respectively. Thus, the Pt-Tl bond distance increases with increasing number of cyano ligands on the thallium atom. In all three complexes the thallium atom and five cyano ligands, with a mean Pt-C distance of 2.00-2.01 A, octahedrally coordinate the platinum atom. In the hydrated [(NC)(5)Pt-Tl(CN)(H(2)O)(4)](-) species the thallium atom coordinates one cyano ligand, probably as a linear Pt-Tl-CN entity with a Tl-C bond distance of 2.13(1) A, and possibly four loosely bound water molecules with a mean Tl-O bond distance of about 2.51 A. In the [(NC)(5)Pt-Tl(CN)(2)](2)(-) species, the thallium atom probably coordinates the cyano ligands trigonally with two Tl-C bond distances at 2.20(2) A, and in [(NC)(5)Pt-Tl(CN)(3)](3)(-) Tl coordinates tetrahedrally with three Tl-C distances at 2.22(2) A. EXAFS data were reevaluated for previously studied mononuclear thallium(III)-cyano complexes in aqueous solution, [Tl(CN)(2)(H(2)O)(4)](+), [Tl(CN)(3)(H(2)O)], and [Tl(CN)(4)](-), and also for the solid K[Tl(CN)(4)] compound. A comparison shows that the Tl-C bond distances are longer in the dinuclear complexes [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3) for the same coordination number. Relative oxidation states of the metal atoms were estimated from their (195)Pt and (205)Tl chemical shifts, confirming that the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes can be considered as metastable intermediates in a two-electron-transfer redox reaction from platinum(II) to thallium(III). Vibrational spectra were recorded and force constants from normal-coordinate analyses are used for discussing the delocalized bonding in these species.  相似文献   

17.
We report 355 and 532 nm photoelectron imaging results for H(-)(NH(3))(n) and NH(2)(-)(NH(3))(n), n = 0-5. The photoelectron spectra are consistent with the electrostatic picture of a charged solute (H(-) or NH(2)(-)) solvated by n ammonia molecules. For a given number of solvent molecules, the NH(2)(-) core anion is stabilized more strongly than H(-), yet the photoelectron angular distributions for solvated H(-) deviate more strongly from the unsolvated limit than those for solvated NH(2)(-). Hence, we conclude that solvation effects on photoelectron angular distributions are dependent on the electronic structure of the anion, i.e., the type of the initial orbital of the photodetached electron, rather than merely the strength of solvation interactions. We also find evidence of photofragmentation and autodetachment of NH(2)(-)(NH(3))(2-5), as well as autodetachment of H(-)(NH(3))(5), upon 532 nm excitation of these species.  相似文献   

18.
Ion-molecule reactions of Mg(+)(H(2)O)(n), n ≈ 20-60, with O(2) and CO(2) are studied by Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. O(2) and CO(2) are taken up by the clusters. Both reactions correspond to the chemistry of hydrated electrons (H(2)O)(n)(-). Density functional theory calculations predicted that the solvation structures of Mg(+)(H(2)O)(16) contain a hydrated electron that is solvated remotely from a hexa-coordinated Mg(2+). Ion-molecule reactions between Mg(+)(H(2)O)(16) and O(2) or CO(2) are calculated to be highly exothermic. Initially, a solvent-separated ion pair is formed, with the hexa-coordinated Mg(2+) ionic core being well separated from the O(2)(?-) or CO(2)(?-). Rearrangements of the solvation structure are possible and produce a contact-ion pair in which one water molecule in the first solvation shell of Mg(2+) is replaced by O(2)(?-) or CO(2)(?-).  相似文献   

19.
Photodetachment from NO(-)(N(2)O)(n) cluster anions (n< or =7) is investigated using photoelectron imaging at 786, 532, and 355 nm. Compared to unsolvated NO(-), the photoelectron anisotropy with respect to the laser polarization direction diminishes drastically in the presence of the N(2)O solvent, especially in the 355 nm data. In contrast, a less significant anisotropy loss is observed for NO(-)(H(2)O)(n). The effect is attributed to photoelectron scattering on the solvent, which in the N(2)O case is mediated by the (2)Pi anionic resonance. No anionic resonances exist for H(2)O in the applicable photoelectron energy range, in line with the observed difference between the photoelectron images obtained with the two solvents. The momentum-transfer cross section, rather than the total scattering cross section, is argued to be an appropriate physical parameter predicting the solvent effects on the photoelectron angular distributions in these cluster anions.  相似文献   

20.
The chemistry of (H(2)O)(n)(?-), CO(2)(?-)(H(2)O)(n), and O(2)(?-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(?-) to O(2)(?-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(?-) with CH(3)SH as well as CO(2)(?-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号