首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
石油焦制备炭分子筛的原位合成TG-DTA研究与机理考察   总被引:3,自引:2,他引:1  
邢伟  阎子峰 《燃料化学学报》2001,29(Z1):198-201
以石油焦合成新型微孔炭分子筛是石油焦升值利用的有效途径.实验采用TG-DTA原位技术,研究了石油焦合成炭分子筛反应过程的全貌.还采用反应快速终止技术研究不同活化阶段反应产物的结构特点.并结合实验现象,推测活化过程分两步进行,活化反应在低温段和高温段存在两种不同的活化机理即低温强碱活化机理和高温金属离子活化机理.利用TG-DTA原位技术考察金属离子对石油焦的活化过程.  相似文献   

2.
石油焦活化机理的研究   总被引:11,自引:4,他引:11  
研究了石油焦在高温、碱性条件下的活化机理。扫描电镜和低温N2吸附法测定孔结构结果表明,石油焦在750 ℃~800 ℃下活化得到的产品,比表面达2 900 m2/g,微孔率到90%,吸附甲烷的体积比为115∶1,是较理想的活化反应温度范围。气相色谱分析结果证明,在活化过程中产生的气体为H2,CO2,CO,CH4。X射线衍射结果表明,吸附剂产物属于部分石墨化的无定形体。  相似文献   

3.
尹双凤  徐柏庆 《催化学报》2002,23(6):507-512
采用BET,XRD,TG-DTA,FT-IR,XPS和NH3-TPD等分析手段,研究了活化焙烧温度(500-800℃)对B2O3/ZrO2催化剂织构/结构、表面性质和环己酮肟气相重排反应的影响。催化剂活化焙烧温度升高促进了ZrO2向单斜晶相转化,同时活性组分氧化硼由以BO4为主要结构单元的物种转变为以BO3为基本结构单元的B2O3,导致催化剂比表面积,孔体积以及表面酸量减小,ZrO2与B2O3之间的相互作用减弱、700℃活化焙烧的催化剂表面拥有最大比例的中强酸中心,而且Beckmann反应的活性稳定性最高。这些结果表明,活化焙烧温度为B2O3/ZrO2催化剂上气相重排反应的影响主要是通过改变催化剂中B原子的配位状态和表面酸性实现的。  相似文献   

4.
焦磷酸根嵌入后形成的交联水滑石的研究   总被引:1,自引:0,他引:1  
包玉敏  李连生 《化学通报》2002,65(3):194-197
合成了焦磷酸根交联水滑石,用XRD,FT-IR,DTA-TG,MASNMR等手段研究了焦磷酸根嵌入后形成的水滑后,提出了嵌入水滑石层间最多的离子为H2P2O7^2-,高温灼烧,P2O7^4-柱子交联到层上,且焦磷酸根离子链垂直位于水滑石层中,产物表面积为87m^2/g。  相似文献   

5.
 用溶胶-凝胶法制备了超细Fe-Al-P-O催化剂,并用DTA-TG,BET,TEM,XRD,TPR和IR等技术研究了催化剂的微观组成和结构及其晶格氧活性,探讨了催化剂的制备工艺,考察了溶胶-凝胶的形成机理、凝胶干燥及焙烧条件对催化剂微观组成和结构的影响规律.结果表明,Fe-Al-P-O催化剂呈非晶态,是具有均匀分布的超细粒子(10nm),其比表面积大(238m2/g),晶格氧活性高.FePO4和AlPO4间隔分布在催化剂表面,形成Lewis碱位(P=O,P-O-Fe)和Lewis酸位(Fe3+,Al3+).  相似文献   

6.
MCM-41中孔SiO2分子筛合成新方法   总被引:9,自引:0,他引:9  
以溴代十六烷基吡啶(CPBr)为模板剂,正硅酸乙酯(TEOS)为硅源,在优化的操作条件下通过S+X-I 路径合成了高结晶度的MCM-41中孔SiO2分子筛,并提高了其收率;以TG-DTA结果为基础,对分子筛脱模板剂的过程进行了优化,同时以XRD对合成物系中CPBr;TEOSHCl,H2O相对含量对MCM-41分子筛晶相结构的影响以及该结构的形成过程进行了分析,发现MCM-41结构沿S+X-I 路径的形成经过了Lamellar→Hexagonal相转移历程.  相似文献   

7.
研究了以木质活性炭颗粒为原料,通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例,并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50mg.L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力,实验结果表明,经过KOH再活化显著调高了样品的间二甲苯吸附容量,这很可能和样品中发达的微孔结构有关。  相似文献   

8.
活性炭二次活化对其电化学容量的影响   总被引:3,自引:0,他引:3  
为进一步提高作为电化学超级电容器电极材料活性炭的电化学容量, 采用KOH作为二次活性剂, 将所得活性炭进行二次化学活化处理, 从而得到二次活化活性炭. 将原始活性炭材料与二次活化活性炭材料都分别经过系列处理, 组装成电化学超级电容器进行电化学性能测试. 测试结果表明, 二次活化活性炭材料的电化学容量达到145.0 F·g-1(有机电解液), 远远大于原活性炭材料的容量(45.0 F·g-1). 为研究二次活化活性炭材料电化学容量大幅提高的原因, 将这两种材料分别进行微观结构数据测试, 包括比表面积、N2吸脱附等温曲线和孔径分布. 研究结果表明, 二次活化处理大大增加了二次活化活性炭材料在孔径为2-3 nm的中孔分布, 从而证实对于有机电解液, 电极材料在2-3 nm的中孔对其电化学容量的提高具有重要意义.  相似文献   

9.
尹双凤  徐柏庆 《催化学报》2002,23(6):507-512
 采用BET,XRD,TG-DTA,FT-IR,XPS和NH3-TPD等分析手段,研究了活化焙烧温度(500~800℃)对B2O3/ZrO2催化剂织构/结构、表面性质和环己酮肟气相重排反应的影响.催化剂活化焙烧温度升高促进了ZrO2向单斜晶相转化,同时活性组分氧化硼由以BO4为主要结构单元的物种转变为以BO3为基本结构单元的B2O3,导致催化剂比表面积、孔体积以及表面酸量减小,ZrO2与B2O3之间的相互作用减弱.700℃活化焙烧的催化剂表面拥有最大比例的中强酸中心,而且Beckmann反应的活性稳定性最高.这些结果表明,活化焙烧温度对B2O3/ZrO2催化剂上气相重排反应的影响主要是通过改变催化剂中B原子的配位状态和表面酸性实现的.  相似文献   

10.
以苯二酚与甲醛为前驱体,赖氨酸作为催化剂,快速合成了有机溶胶。有机溶胶经碳化以及KOH进一步活化,获得了具有较高微孔率和较大比表面积的炭干凝胶。研究了多孔炭干凝胶的储氢性能,比较了不同活化程度的炭干凝胶的最大储氢容量与比表面积、微孔体积以及微孔孔径分布的关系。结果表明,KOH适度活化的炭干凝胶(ACX-5)具有较高的比表面积(2 204 m2.g-1)和较大的总孔容积(1.09 cm3.g-1),在77 K和1.1 MPa氢压下时其储氢量可达4.3wt%。  相似文献   

11.
Highly mesoporous spherical activated carbons (SACs) were prepared from divinylbenzene-derived polymers by ZnCl(2) activation; the effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied. SACs thus prepared were characterized by N(2) adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and aqueous adsorption assays. All the SACs were generated with high yield (>54%) and high mesopore fraction (around 80%). SEM and XRD analyses of SAC28 verified the presence of the disordered micrographite stacking with developed mesoporosity. Compared with conventional activated carbons, SAC28 prepared in our study exhibited a comparable adsorption capacity of 190 mg g(-1) for bisphenol A and even more excellent capacity of 330 mg g(-1) for phenol. Bisphenol A preloading significantly reduced the adsorption capacity of SAC28 for phenol due to both reduction of adsorption sites and pore blockage.  相似文献   

12.
活性炭表面含氧基团的生成及对NO的还原作用   总被引:11,自引:0,他引:11  
高志明  杨向光  吴越 《催化学报》1996,17(4):327-329
活性炭表面含氧基团的生成及对NO的还原作用*高志明杨向光吴越**(中国科学院长春应用化学研究所,长春130022)关键词活性炭,一氧化氮,氧化铜,还原,氧化近几年,随着环保研究的开展,活性炭被用于同时脱硫脱硝反应[1].活性炭的表面化学性质就成为需要...  相似文献   

13.
Activated carbons were prepared from old newspaper and paper prepared from simulated paper sludge by chemical activation using various alkali carbonates and hydroxides as activating reagents and also by physical activation using steam. In the chemical activation, the influence of oxidation, carbonization, and activation on the porous properties of the resulting activated carbons was investigated. The specific surface areas (S(BET)) of the activated carbons prepared by single-step activation (direct activation without oxidation and carbonization) were higher than those resulting from two-step activation (oxidation-activation and carbonization-activation) and three-step activation (oxidation-carbonization-activation) methods. The S(BET) values were strongly dependent on the activating reagents and the activating conditions, being >1000 m(2)/g using K(2)CO(3), Rb(2)CO(3), Cs(2)CO(3), and KOH as activating reagents but <1000 m(2)/g using Li(2)CO(3), Na(2)CO(3), and NaOH. These differences in S(BET) values are suggested to be related to the ionic radii of the alkalis used as activating reagents. The microstructures of the higher S(BET) samples show a complete loss of fiber shape but those of the lower S(BET) samples maintain the shape. In the physical activation, the porous properties of the activated carbons prepared by the single-step method were examined as a function of the production conditions such as activation temperature, activation time, steam concentration, and flow rate of the carrier gas. The maximum S(BET) and total pore volume (V(P)) were 1086 m(2)/g and 1.01 ml/g, obtained by activation at 850 degrees C for 2 h, flowing 20 mol% of steam in nitrogen gas at 0.5 l/min. A correlation was found between S(BET) and the yield of the product, the maximum S(BET) value corresponding to a product yield of about 10%. This result is suggested to result from competition between pore formation and surface erosion. Compared with chemically activated carbons using K(2)CO(3), the porous properties of the physically activated carbons have lower S(BET) and V(P) values because of the smaller size and lower volume of their micropores. On the other hand, they retain the original fiber shape and the paper sheet morphology after activation.  相似文献   

14.
Activated carbon samples from coconut shells (Brazilian coconut species “Coco da Baía”) were prepared by chemical activation with phosphoric acid as the activating agent. Samples were characterized by nitrogen adsorption isotherms at 77 K. Some samples were randomly chosen in order to perform methane adsorption experiments under pressures between 1 and 60 bar at 303 K. A close relationship between surface area, micropore volume and methane adsorption capacity for carbons prepared from the same starting material was observed. The highest methane storage capacity in the tested samples was found to be 95 v/v at 303 K and 35 bar, which is comparable to results obtained for commercial samples indicated for this application. A moderate concentration of phosphoric acid (around 35%) seems to favor high surface areas, micropore volumes and, hence, gas storage capacity. The inclusion of an acid wash step before carbonization and the use of inert gas flow during carbonization also seem to enhance the development of porosity. This result suggests that activated carbons prepared from “Coco da Baía” by chemical activation with phosphoric acid have potential to be used as a storage media for natural gas.  相似文献   

15.
A series of Co/x%Nb2O5/Al2O3 catalysts were prepared by anchoring niobia on an Al2O3 support at different niobia concentrations. Characterization of the structure and nature of surface active sites was attempted in order to correlate the CO hydrogenation activity of these systems with those of the Co/Al2O3 and Co/Nb2O5 catalysts. The effect of the reduction temperature on the CO hydrogenation activity and selectivity was studied, showing that interaction of cobalt and niobia surface species favored the selectivity for hydrocarbon chain growth. However, this effect is less pronounced on the niobia-promoted Co/Al2O3 compared to Co/Nb2O5 catalysts. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) results on Co/x%Nb2O5/Al2O3 showed prevailing amounts of Co2+ and Co3+ after calcination and reduction at 573 K, while, after reduction at 773 K, besides metallic cobalt, the Co2+ species still remains in contact with alumina, even for higher niobia loading. It seems that during this process formation and destruction of new interfaces involving Co0-NbOx sites takes place. Results suggest that Co0, Co0-Co2+, and Co0-NbOx are the active sites at the surface. The relative abundance of Co2+ species affects greatly the performance of the catalysts. DRIFTS and selectivity results suggest that these sites might be responsible for the reaction chain growth and therefore for the drastic change in the selectivity of CH4 and C5+ hydrocarbons mainly on the Co/Nb2O5 catalyst. DRIFTS results on Co/Nb2O5/Al2O3 showed the formation of -C=C- and -CH3- besides CHxO species. With increasing reduction temperature, the -C=C- species disappear while -CH3- fragments increased markedly, suggesting the formation of increasing amounts of hydrocarbons with higher chain length.  相似文献   

16.
Selective oxidation of methane with hydrogen peroxide was catalyzed by several simple vanadium compounds in CH3CN. The reaction could afford formic acid as the major product. Vanadyl oxysulfate (VOSO4) was found to be an efficient catalyst. Specifically, the selectivity to formic acid of 70% at a methane conversion of 6.5% could be achieved over the VOSO4 catalyst under the reaction conditions of methane pressure 3.0 MPa and temperature 333 K for 4 h. The UV-Vis spectroscopic measurements revealed that the formation of V5+ species during the reaction might be vital for the methane activation. The reaction probably proceeded via radical mechanism.  相似文献   

17.
低镍催化剂上CO和CO_2加氢反应的对比研究   总被引:2,自引:0,他引:2  
采用CO和CO_2对比加氢活性测试,XRD及TPR方法研究了两个不同Na助剂含量的低镍Ni/Al_2O_3体系的性能。实验发现,在低镍催化剂上CO_2在较低温度下就可加氢生成甲烷,而CO则需要更高的温度,CO_2无需先经逆变换生成CO,然后再加氢,它可直接加氢生成CH_4。在同一催化剂上,CO_2加氢生成CH_4的表现活化能要低于CO加氢生成CH_4反应的表现活化能。晶相NiO还原后形成的活性相对CO_2加氢反应的活性明显高于它对CO的加氢活性,非晶相镍氧化物还原后形成的活性相对CO的加氢反应特别有利。Na助剂的含量不同会造成Ni氧化物物种的分配不同,从而导致CO、CO_2的加氢活性及其随温度的变化也不相同,催化剂对CO、CO_2加氢反应作用的本质是不相同的。  相似文献   

18.
Solvate-supported proton transport in zeolite H-ZSM-5 was studied by means of complex impedance spectroscopy. The zeolite shows enhanced proton mobility in the presence of NH3 and H2O that depends on the concentration of the solvate molecule, temperature (298-773 K), and the SiO2/Al2O3 ratio of the zeolite (30-1000). In general, proton conductivity in H-ZSM-5 is most effectively supported in the presence of NH3 and H2O at high concentrations, low temperatures, and low SiO2/Al2O3 ratios (< or = 80). For the aluminum-rich samples desorption measurements reflect different transport mechanisms that depend on the respective temperature range. Up to about 393 K a Grotthus-like proton transport mechanism is assumed, whereas at higher temperatures (393-473 K) vehiclelike transport seems to dominate. The activation energies for NH4+ and H3O+ vehicle conductivity depend on the SiO2/Al2O3 ratio, and the values are in the range of 49-59 and 39-49 kJ mol-1, respectively, and thus significantly lower than those for "pure" proton conduction in solvate-free samples.  相似文献   

19.
Here we report on the role of oxygen in the evolution of radial heterogeneity in the fibre structure and properties of PAN fibres stabilized in air and vacuum at different temperatures. Modulus mapping by Nano-indentation showed heterogeneous modulus distribution in the fibres treated in air, while no variation in modulus was observed in fibres processed in vacuum. Raman spectroscopy and elemental analysis revealed that the temperature dependent oxygen diffusion from skin to core of the fibres assisted in the evolution of higher extent of sp2-hybridized carbons in the skin compared to core of the air treated samples. Conversely, no radial structure variations were observed in the vacuum treated fibres. Higher modulus in the skin of air-treated fibres was due to the formation of compact structures which was associated with the enhanced intermolecular interactions facilitated by the formation of C=C bonds within the polymer backbone, promoted by oxidative-dehydrogenation reaction. Supporting these observations, the fracture morphology examined by SEM showed a brittle fracture in the skin and ductile fracture in the core.  相似文献   

20.
EPR and water proton relaxation rate (1/T1) studies of partially (40%) and "fully" (90%) purified preparations of membrane-bound (Na+ + K+) activated ATPase from sheep kidney indicate one tight binding site for Mn2+ per enzyme dimer, with a dissociation constant (KD = 0.88 muM) in agreement with the kinetically determined activator constant, identifying this Mn2+-binding site as the active site of the ATPase. Competition studies indicate that Mg2+ binds at this site with a dissociation constant of 1 mM in agreement with its activator constant. Inorganic phosphate and methylphosphonate bind to the enzyme-Mn2+ complex with similar high affinities and decrease 1/T1 of water protons due to a decrease from four to three in the number of rapidly exchanging water protons in the coordination sphere of enzyme-bound Mn2+. The relative effectiveness of Na+ and K+ in facilitating ternary complex formation with HPO2-4 and CH3PO2-3 as a function of pH indicates that Na+ induces the phosphate monoanion to interact with enzyme-bound Mn2+. Thus protonation of an enzyme-bound phosphoryl group would convert a K+-binding site to a Na+-binding site. Dissociation constants for K+ and Na+, estimated from NMR titrations, agreed with kinetically determined activator constants of these ions consistent with binding to the active site. Parallel 32Pi-binding studies show negligible formation (less than 7%) of a covalent E-P complex under these conditions, indicating that the NMR method has detected an additional noncovalent intermediate in ion transport. Ouabain, which increases the extent of phosphorylation of the enzyme to 24% at pH 7.8 and to 106% at pH 6.1, produced further decreases in 1/T1 of water protons. Preliminary 31P- relaxation studies of CH3PO2-3 in the presence of ATPase and Mn2+ yield an Mn to P distance (6.9 +/- 0.5 A) suggesting a second sphere enzyme-Mn-ligand-CH3PO2-3 complex. Previous kinetic studies have shown that T1+ substitutes for K+ in the activation of the enzyme but competes with Na+ at higher levels. From the paramagnetic effect of Mn2+ at the active site on the enzyme on I/T1 of 205T1 bound at the Na+ site, a Mn2+ to T1+ distance of 4.0 +/- 0.1 A is calculated, suggesting the sharing of a common ligand atomy by Mn2+ and T1+ on the ATPase. Addition of Pi increases this distance to 5.4 A consistent with the insertion of P between Mn2+ and T1+. These results are consistent with a mechanism for the (Na+ + K+)-ATPase and for ion transport in which the ionization state of Pi at a single enzyme active site controls the binding and transport of Na+ and K+, and indicate that the transport site for monovalent cations is very near the catalytic site of the ATPase. Our mechanism also accounts for the order of magnitude weaker binding of Na+ compared to K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号