首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
用MSCV法研究了Pt催化剂作用下, 碳材料在PH0.3~11.8范围内的阳极腐蚀.Pt催化剂明显加速了活性炭及乙炔黑的腐蚀速度, 使这两种电极上CO2开始析出的电位ΦO2/H2O。因此两种碳电极无论作为阳极还是氧阴极工作时均会被腐蚀。Pt对乙炔黑的催化活性明显强于活性炭, 对于活性炭, Pt并不改变CO2的ΦS-PH曲线的形状(ηS-CO2如析出的超电势)(即无论有无Pt它们均为折点在PH~7折线)。然而乙炔黑的情况更为复杂, Pt使CO2的ΦS-PH及ηS-PH形状从折线变为直线; 在CO2的IM-Φ曲线上出现两个波。它们似与乙炔黑上两种表面氧化物相对应。  相似文献   

2.
用MSCV法研究了Pt催化剂作用下,碳材料在pH 0.3~11.8范围内的阳极腐蚀.Pt催化剂明显加速了活性炭及乙炔黑的腐蚀速度,使这两种电极上CO_2开始析出的电位φ_s明显负移,以致均负于φ_(O_2/H_2O).因此两种碳电极无论作为阳极还是氧阴极工作时均会被腐蚀.Pt对乙炔黑的催化活性明显强于活性炭.对于活性炭,Pt并不改变CO_2的φ_s-pH及η_s-pH曲线的形状(η_s-CO_2开始析出的超电势)(即无论有无Pt它们均为折点在pH~7的折线).然而乙炔黑的情况更为复杂.Pt使CO_2的φ_s-pH及η_s-pH形状从折线变为直线;在CO_2的I_(M-φ)曲线上出现两个波.它们似与乙炔黑上两种表面氧化物相对应.  相似文献   

3.
用MSCV法研究了活性炭及乙炔黑在pH1-12范围内的电氧化,两种炭的φ~s、η~s与pH的关系(φ~s及η~s是CO~2开始析出的电位及超电位)以及I~M、φ~I与pH的关系(I~M、φ~I分别为给定电位下的质谱强度及给定I~M下的电位)均为一折点在的pH~7的折线。这暗示酸、碱介质中有不同的氧化机理。pH>7时,η~s及Tafel斜率b均较pH<7时的大。似可推断在酸性介质中形成CO~2所需的氧原子来自水分子放电,其活性明显大于来自碱性溶液中OH^-放电产生的氧原子。因而在酸性介质中炭氧化为CO~2较碱性介质中易于进行。两种炭之间氧化活性亦有明显区别。活性炭的φ~s比φⅲ(O~2/H~2O)负400-600mV;乙炔黑的φ~s则接近或正于φⅲ(O~2/H~2O)。前者的I~M及b均后者大。乙炔黑较低的氧化活性可归因于其较高的有序性结构。  相似文献   

4.
用MSCV法研究了活性炭及乙炔黑在pH1-12范围内的电氧化,两种炭的φ~s、η~s与pH的关系(φ~s及η~s是CO~2开始析出的电位及超电位)以及I~M、φ~I与pH的关系(I~M、φ~I分别为给定电位下的质谱强度及给定I~M下的电位)均为一折点在的pH~7的折线。这暗示酸、碱介质中有不同的氧化机理。pH>7时,η~s及Tafel斜率b均较pH<7时的大。似可推断在酸性介质中形成CO~2所需的氧原子来自水分子放电,其活性明显大于来自碱性溶液中OH^-放电产生的氧原子。因而在酸性介质中炭氧化为CO~2较碱性介质中易于进行。两种炭之间氧化活性亦有明显区别。活性炭的φ~s比φⅲ(O~2/H~2O)负400-600mV;乙炔黑的φ~s则接近或正于φⅲ(O~2/H~2O)。前者的I~M及b均后者大。乙炔黑较低的氧化活性可归因于其较高的有序性结构。  相似文献   

5.
用MSCV法研究了活性炭及乙炔黑在pH1—12范围内的电氧化,两种炭的φ_s、η_s与pH的关系(φ_(?)及η_(?)是CO_2开始析出的电位及超电位)以及I_M、φ_I与pH的关系(I_M、φ_I分别为给定电位下的质谱强度及给定I_M下的电位)均为一折点在的pH~7的折线.这暗示酸、碱介质中有不同的氧化机理.pH>7时,η_s及Tafel斜率b均较pH<7时的大.似可推断在酸性介质中形成CO_2所需的氧原子来自水分子放电,其活性明显大于来自碱性溶液中OH~-放电产生的氧原子.因而在酸性介质中炭氧化为CO_2较碱性介质中易于进行.两种炭之间氧化活性亦有明显区别.活性炭的φ_(?)比φ°(O_2/H_2O)负400—600mV;乙炔黑的φ_s则接近或正于φ°(O_2/H_2O).前者的I_M及b均较后者大.乙炔黑较低的氧化活性可归因于其较高的有序性结构.  相似文献   

6.
CO在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:3,自引:0,他引:3  
通过阴极还原-阳极氧化法制备了Pt—TiO2/Ti电极,研究了CO在该电极上的电化学行为和电极制备条件对CO电催化氧化的影响.结果表明,与Pt电极相比.CO在Pt—TiO2/Ti电极上的氧化峰峰电位负移了100mV,并且表现出较好的稳定性.通过XPS技术对Pt—TiO2/Ti电极进行了表征.发现Pt以金属形式存在,Ti以TiO2形式存在.Pt—TiO2/Ti电极能抗CO中毒的原因可能是因为TiO2的掺杂使引起催化剂中毒的桥式吸附的CO物种在复合催化剂上的吸附率较低所致.  相似文献   

7.
任红艳 《分子催化》2015,29(2):173-178
通过水热法合成棒状纳米Ce O2(Ce O2-R),并将Pt纳米颗粒负载于Ce O2表面,制得甲醇燃料电池的阳极催化剂Pt/Ce O2-R.通过结构与形貌表征,结果表明,Pt/Ce O2-R中Ce O2的暴露晶面为(111)和(002)晶面,改变了Pt周围的电子结构,进而降低了Pt-COads的键能,释放出更多的活性位.另外,Pt纳米颗粒在Ce O2-R表面分散更均匀.利用电化学工作站测试阳极催化剂Pt/Ce O2-R在酸性溶液中的电化学性能,证明Pt/Ce O2-R催化剂的甲醇电氧化性能与抗CO毒害能力较颗粒状Ce O2负载Pt催化剂(Pt/Ce O2-P)都有很大的提高,证明Ce O2-R作为Pt纳米颗粒的载体用于直接甲醇燃料电池的阳极反应具有发展潜力.  相似文献   

8.
炔丙醇在多孔Pt黑电极上, 0.5mol.dm^-3HCLO4溶液中电还原的MSCV研究结果表明炔丙醇电还原时既涉及烯丙基C-OH断键反应亦涉及炔丙基上C-OH断键反应生成烃类。此外有少量炔丙醇直接质子化生成部分饱和的烯丙醇。表征各种反应产物的M/Z的质谱电流-电极电位扫描曲线(IM-Φ)详细描绘了各分步反应的图象。各M/Z的1gIM-Φ曲线在一空电位范围内呈线性, 并求得它们的Tafel斜率。依据实验结果对反应机理进行了详细分析。  相似文献   

9.
刘佩芳  陈剑  王辉  查全性 《化学学报》1993,51(2):155-160
炔丙醇在多孔Pt黑电极上, 0.5mol.dm^-3HCLO4溶液中电还原的MSCV研究结果表明炔丙醇电还原时既涉及烯丙基C-OH断键反应亦涉及炔丙基上C-OH断键反应生成烃类。此外有少量炔丙醇直接质子化生成部分饱和的烯丙醇。表征各种反应产物的M/Z的质谱电流-电极电位扫描曲线(IM-Φ)详细描绘了各分步反应的图象。各M/Z的1gIM-Φ曲线在一空电位范围内呈线性, 并求得它们的Tafel斜率。依据实验结果对反应机理进行了详细分析。  相似文献   

10.
PEMFC催化剂的研究:自制抗CO中毒Pt-Ru/C电催化剂的性质   总被引:4,自引:0,他引:4  
用胶体法制备了抗CO中毒PEMFC阳极Pt-Ru/C电催化剂(标记为THYT-2),对 比研究了THYT-2与Johnson Matthey (JM)公司同类品牌Pt-Ru/C催化剂的电化学及 其它物理化学性能。结果表明,THYT-2电催化剂在甲醇燃料电池和CO/H_2(Φ_ (CO) = 1 * 10~(-4))的氢氧燃料电池中的电催化行为与JM催化剂相当,但THYT- 2在低浓度CO氢气燃料中的电池性能更好。两种催化剂的其它物理化学性质具有类 似性:XPS分析结果表明THYT-2和JM催化剂 中都有三种不同价态的Pt存在:即金 属态Pt(0)、氧化态Pt(II)和Pt(IV)。HRTEM测试结果表明两种催化剂的粒径处在2 ~3 mn左右,这可能是它们拥有良好电化学性能的主要原因之一。本文还对催化剂 中Pt与Ru组分的分布和相互作用进行了讨论,提出了改进Pt-Ru/C电催化剂的思路 。  相似文献   

11.
An EC-FTIR study on the catalytic role of Pt in carbon corrosion   总被引:1,自引:0,他引:1  
In this study, we investigate the role of Pt in the corrosion of carbon by Fourier-transformed infrared spectroscopy coupled in situ with electrochemical measurements. We confirm that the carbon corrosion rate is strongly enhanced in the presence of Pt and shed light on the reaction mechanisms at both anode and cathode potentials. It is shown that carbon surface oxide species (phenol, ether, carboxylic and carbonyl groups), formed at low electrode potential E < 0.60 V vs. RHE, spillover back from the carbon support to the Pt nanoparticles, where they are converted into CO and then slowly oxidized into CO2. At higher electrode potential E > 0.60 V vs. RHE, oxygenated species resulting from water splitting on Pt facilitate the removal of these carbon surface oxides species yielding increased kinetics for carbon corrosion.  相似文献   

12.
While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.  相似文献   

13.
Pt/carbon black samples fabricated from dimethyl (1,5-cyclooctadiene) platinum(II) in supercritical CO2 are characterized in relation to possible applications in methanol fuel cell. The problem of precise material characterization is addressed in frames of X-ray diffractometry, transmission electron microscopy, and electrochemical techniques of the true surface area determination. The catalysts with Pt loading of 20–40 wt.% consist of nm-size particles, with the lattice defectiveness dependent on the fabrication mode. To check the effect of support, various types of carbon blacks (Vulcan XC72R and acetylene black AC-1) are used. In contrast to commercial HiSpec catalysts, no pronounced increase of particle size with Pt loading is found. Specific steady-state activity towards methanol oxidation appears to be essentially higher than for commercial catalysts, mostly because the self-poisoning effects are less pronounced. As for poisoning of Pt with organic species (resulting from the ligand of precursor), its effects are demonstrated to be minor after CO or methanol adsorption accompanied by desorption of contaminating by-product.  相似文献   

14.
TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3.  相似文献   

15.
As catalysis research strives toward designing structurally and functionally well-defined catalytic centers containing as few active metal atoms as possible, the importance of understanding the reactivity of small metal clusters, and in particular of systematic comparisons of reaction types and cluster sizes, has grown concomitantly. Here we report density functional theory calculations (GGA-PW91) that probe the relationship between particle size, intermediate structures, and energetics of CO and NO oxidation by molecular and atomic oxygen on Pt(x) clusters (x = 1-5 and 10). The preferred structures, charge distributions, vibrational spectra, and energetics are systematically examined for oxygen (O(2), 2O, and O), CO, CO(2), NO, and NO(2), for CO/NO co-adsorbed with O(2), 2O, and O, and for CO(2)/NO(2) co-adsorbed with O. The binding energies of oxygen, CO, NO, and of the oxidation products CO(2) and NO(2) are all markedly enhanced on Pt(x) compared to Pt(111), and they trend toward the Pt(111) levels as cluster size increases. Because of the strong interaction of both the reactants and products with the Pt(x) clusters, deep energy sinks develop on the potential energy surfaces of the respective oxidation processes, indicating worse reaction energetics than on Pt(111). Thus the smallest Pt clusters are less effective for catalyzing CO and NO oxidation in their original state than bulk Pt. Our results further suggests that oxidation by molecular O(2) is thermodynamically more favourable than by atomic O on Pt(x). Conditions and applications in which the Pt(x) clusters may be effective catalysts are discussed.  相似文献   

16.
Multiwalled carbon nanotubes (MWCNTs) were grown on the fibers of a commercial porous carbon paper used as carbon-collecting electrodes in fuel cells. The tubes were then covered with Pt nanoparticles in order to test these gas diffusion electrodes (GDEs) for oxygen reduction in H2SO4 solution and in H2/O2 fuel cells. The Pt nanoparticles were characterized by cyclic voltammetry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The majority of the Pt particles are 3 nm in size with a mean size of 4.1 nm. They have an electrochemically active surface area of 60 m2/g Pt for Pt loadings of 0.1-0.45 mg Pt/cm2. Although the electroactive Pt surface area is larger for commercial electrodes of similar loadings, Pt/MWCNT electrodes largely outperform the commercial electrode for the oxygen reduction reaction in GDE experiments using H2SO4 at pH 1. On the other hand, when the same electrodes are used as the cathode in a H2/O2 fuel cell, they perform only slightly better than the commercial electrodes in the potential range going from approximately 0.9 to approximately 0.7 V and have a lower performance at lower voltages.  相似文献   

17.
Adsorption of SO(2) in the presence of O(2) on Pt/C catalysts often used as electrocatalysts has been investigated by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The amounts of SO(2) adsorption on Pt/C in the presence of O(2) were much higher than those in the absence of O(2) (SO(2)-N(2)) and from the carbon support (Vulcan XC-72) alone. Adsorption is dependent on oxygen concentration over the range 0-20% but reaches saturation at 20% O(2). The spillover of SO(2) from Pt to the carbon support has been proposed for 10, 20, and 40% Pt loadings, characterized by desorption temperatures of approximately 150 and 260 °C for SO(2) adsorbed on Pt and carbon, respectively. Adsorbed Pt-S, C-S, C-SO(x), and Pt-SO(4) species were identified by XPS as S-containing species on both Pt and carbon. Both TPD and XPS indicate that the carbon support plays a major role in SO(2) adsorption, primarily as SO(x) (x = 3, 4). The bonding of S and SO(x) on the carbon support was strong enough that back diffusion to the Pt surface did not occur.  相似文献   

18.
The surface properties of bimetallic Ni-Pt/SiO2 catalysts with variable Ni/Ni + Pt atomic ratio (0.75, 0.50, and 0.25) were studied using N2O decomposition and N2O reduction by hydrogen reactions as probes. Catalysts were prepared by incipient wetness impregnation of the silica support with aqueous solutions of the metal precursors to a total metal loading of 2 wt %. For both model reactions, Pt/SiO2 catalyst was substantially more active than Ni/SiO2 catalyst. Mean particle size by TEM was about the same (in the range 6-8 nm) for all catalysts and truly bimetallic particles (more than 95%) were evidenced by EDS in the Ni-Pt/SiO2 catalysts. CO adsorption on the bimetallic catalysts showed differences in the linear CO absorption band as a function of the Ni/Pt atomic ratio. Bimetallic Ni-Pt/SiO2 catalysts showed, for the N2O decomposition, a catalytic behavior that points out an ensemble-size sensitive behavior for Ni-rich compositions. For the N2O + H2 reaction, the bimetallic catalysts were very active at low temperature. The following activity order at 300 K was observed: Ni75Pt25 > Ni25Pt75 approximately Ni50Pt50 > Pt. TOF values for these catalysts increased 2-5 times compared to the most active reference catalyst (Pt/SiO2). The enhancement of the activity in the Ni75Pt25 bimetallic catalysts is explained in terms of the presence of mixed Ni-Pt ensembles.  相似文献   

19.
Carbon dioxide coordination and activation by niobium oxide molecules were studied by matrix isolation infrared spectroscopy. It was found that the niobium monoxide molecule reacted with carbon dioxide to form the niobium dioxide carbonyl complex NbO(2)(η(1)-CO) spontaneously on annealing in solid neon. The observation of the spontaneous reaction is consistent with theoretical predictions that this carbon dioxide activation process is both thermodynamically exothermic and kinetically facile. In contrast, four niobium dioxide-carbon dioxide complexes exhibiting three different coordination modes of CO(2) were formed from the reactions between niobium dioxide and carbon dioxide, which proceeded with the initial formation of the η(1)-O bound NbO(2)(η(1)-OCO) and NbO(2)(η(1)-OCO)(2) complexes on annealing. The NbO(2)(η(1)-OCO) complex rearranged to the η(2)-O,O bound NbO(2)(η(2)-O(2)C) isomer under visible light irradiation, while the NbO(2)(η(1)-OCO)(2) complex isomerized to the NbO(2)(η(1)-OCO)(η(2)-OC)O structure involving an η(2)-C,O ligand under IR excitation. In these niobium dioxide carbon dioxide complexes, the η(1)-O coordinated CO(2) ligand serves as an electron donor, whereas both the η(2)-C,O and η(2)-O,O coordinated CO(2) ligands act as electron acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号