首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
For a q × q matrix x = (x i, j ) we let ${J(x)=(x_{i,j}^{-1})}For a q × q matrix x = (x i, j ) we let J(x)=(xi,j-1){J(x)=(x_{i,j}^{-1})} be the Hadamard inverse, which takes the reciprocal of the elements of x. We let I(x)=(xi,j)-1{I(x)=(x_{i,j})^{-1}} denote the matrix inverse, and we define K=I°J{K=I\circ J} to be the birational map obtained from the composition of these two involutions. We consider the iterates Kn=K°?°K{K^n=K\circ\cdots\circ K} and determine the degree complexity of K, which is the exponential rate of degree growth d(K)=limn?¥( deg(Kn) )1/n{\delta(K)=\lim_{n\to\infty}\left( deg(K^n) \right)^{1/n}} of the degrees of the iterates. Earlier studies of this map were restricted to cyclic matrices, in which case K may be represented by a simpler map. Here we show that for general matrices the value of δ(K) is equal to the value conjectured by Anglès d’Auriac, Maillard and Viallet.  相似文献   

2.
If X = X(t, ξ) is the solution to the stochastic porous media equation in O ì Rd, 1 £ d £ 3,{\mathcal{O}\subset \mathbf{R}^d, 1\le d\le 3,} modelling the self-organized criticality (Barbu et al. in Commun Math Phys 285:901–923, 2009) and X c is the critical state, then it is proved that ò0m(O\Ot0)dt < ¥,\mathbbP-a.s.{\int^{\infty}_0m(\mathcal{O}{\setminus}\mathcal{O}^t_0)dt<{\infty},\mathbb{P}\hbox{-a.s.}} and limt?¥ òO|X(t)-Xc|dx = l < ¥, \mathbbP-a.s.{\lim_{t\to{\infty}} \int_\mathcal{O}|X(t)-X_c|d\xi=\ell<{\infty},\ \mathbb{P}\hbox{-a.s.}} Here, m is the Lebesgue measure and Otc{\mathcal{O}^t_c} is the critical region {x ? O; X(t,x)=Xc(x)}{\{\xi\in\mathcal{O}; X(t,\xi)=X_c(\xi)\}} and X c (ξ) ≤ X(0, ξ) a.e. x ? O{\xi\in\mathcal{O}}. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), limt ? ¥ òK|X(t)-Xc|dx = 0{\lim_{t \to {\infty}} \int_K|X(t)-X_c|d\xi=0} exponentially fast for all compact K ì O{K\subset\mathcal{O}} with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case  = 0.  相似文献   

3.
We consider the nonlinear Schr?dinger equation
(-D+V(x))u = G(x) |u|p-1u,     x ? \mathbb Rn(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, \quad x\in {\mathbb R}^n  相似文献   

4.
We analyze the long time behavior of solutions of the Schrödinger equation ${i\psi_t=(-\Delta-b/r+V(t,x))\psi}We analyze the long time behavior of solutions of the Schr?dinger equation iyt=(-D-b/r+V(t,x))y{i\psi_t=(-\Delta-b/r+V(t,x))\psi}, x ? \mathbbR3{x\in\mathbb{R}^3}, r =  |x|, describing a Coulomb system subjected to a spatially compactly supported time periodic potential V(t, x) =  V(t +  2π/ω, x) with zero time average.  相似文献   

5.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

6.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

7.
We investigate solutions to the equation ? t ?? $\mathcal{D}$ Δ?=λS 2?, where S(xt) is a Gaussian stochastic field with covariance C(x?x′, tt′), and x $\mathbb{R}$ d . It is shown that the coupling λ cN (t) at which the N-th moment <? N (xt)> diverges at time t, is always less or equal for $\mathcal{D}$ >0 than for $\mathcal{D}$ =0. Equality holds under some reasonable assumptions on C and, in this case, λ cN (t)= c (t) where λ c (t) is the value of λ at which <exp[λ t 0 S 2(0, s) ds]> diverges. The $\mathcal{D}$ =0 case is solved for a class of S. The dependence of λ cN (t) on d is analyzed. Similar behavior is conjectured when diffusion is replaced by diffraction, $\mathcal{D}$ i $\mathcal{D}$ , the case of interest for backscattering instabilities in laser-plasma interaction.  相似文献   

8.
We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N - vector spin model in d S 3 dimensions, N S 2. The Gibbs factor is taken as exp[-b(1/2 ||?f||2 +l/8 || |f|2 - 1 ||2 + v/2||f- h||2)], \exp [-\beta (1/2 ||\partial \phi||^2 +\lambda/8 ||\, |\phi|^2 - 1 ||^2 + v/2||\phi - h||^2)], where f(x), h ? RN\phi(x), h \in R^N, x ? Zdx \in Z^d, |h|=1, b < ¥|h|=1, \beta < \infty, l 3 ¥\lambda \geq \infty are large and 0 < v h 1. In the thermodynamic and v ˉ 0v \downarrow 0 limits, with h = e1, and j L ‘½ ‘, the expansion gives áf1(x)? = 1+0(1/b1/2)\langle \phi_1(x)\rangle = 1+0(1/\beta^{1/2}) (spontaneous magnetization), áf1(x)fi(y)? = 0\langle \phi_1(x)\phi_i(y)\rangle=0, áfi (x)fi (y)? = c0 D-1(x,y)+R(x,y)\langle \phi_i (x)\phi_i (y)\rangle = c_0 \Delta^{-1}(x,y)+R(x,y) (Goldstone Bosons), i = 2, 3, ?, Ni= 2, 3,\,\ldots, N, and áf1(x)f1(y)?T=R¢(x,y)\langle \phi_1(x)\phi_1(y)\rangle^T=R'(x,y), where |R(x,y)||R(x,y)|, |R¢(x,y)| < 0(1)(1+|x-y|)d-2+r|R'(x,y)|< 0(1)(1+|x-y|)^{d-2+\rho} for some „ > 0, and c0 is aprecisely determined constant.  相似文献   

9.
Let H = ?Δ + V, where V is a real valued potential on ${\mathbb {R}^2}$ satisfying ${\|V(x)|\lesssim \langle x \rangle^{-3-}}$ . We prove that if zero is a regular point of the spectrum of H = ?Δ + V, then $${\| w^{-1} e^{itH}P_{ac}f\|_{L^\infty(\mathbb{R}^2)} \lesssim \frac{1}{|t|\log^2(|t|)} \| w f\|_{L^1(\mathbb{R}^2)},\,\,\,\,\,\,\,\, |t| \geq 2}$$ , with w(x) = (log(2 + |x|))2. This decay rate was obtained by Murata in the setting of weighted L 2 spaces with polynomially growing weights.  相似文献   

10.
The squared Bessel process is a 1-dimensional diffusion process related to the squared norm of a higher dimensional Brownian motion. We study a model of n non-intersecting squared Bessel paths, with all paths starting at the same point a > 0 at time t = 0 and ending at the same point b > 0 at time t = 1. Our interest lies in the critical regime ab = 1/4, for which the paths are tangent to the hard edge at the origin at a critical time ${t^*\in (0,1)}$ . The critical behavior of the paths for n → ∞ is studied in a scaling limit with time t = t * + O(n ?1/3) and temperature T = 1 + O(n ?2/3). This leads to a critical correlation kernel that is defined via a new Riemann-Hilbert problem of size 4 × 4. The Riemann-Hilbert problem gives rise to a new Lax pair representation for the Hastings-McLeod solution to the inhomogeneous Painlevé II equation q′′(x) = xq(x) + 2q 3(x) ? ν, where ν = α + 1/2 with α > ?1 the parameter of the squared Bessel process. These results extend our recent work with Kuijlaars and Zhang (Comm Pure Appl Math 64:1305–1383, 2011) for the homogeneous case ν = 0.  相似文献   

11.
The initial value problem for an integrable system, such as the Nonlinear Schrödinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4,5]), supplemented by the g-function mechanism ([3]), is applied to this RHP to produce explicit asymptotic solution formulae for the integrable system. These formule are based on a hyperelliptic Riemann surface ${\mathcal {R} = \mathcal {R}(x,t)}The initial value problem for an integrable system, such as the Nonlinear Schr?dinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4,5]), supplemented by the g-function mechanism ([3]), is applied to this RHP to produce explicit asymptotic solution formulae for the integrable system. These formule are based on a hyperelliptic Riemann surface R = R(x,t){\mathcal {R} = \mathcal {R}(x,t)} in the spectral variable, where the space-time variables (x, t) play the role of external parameters. The curves in the x, t plane, separating regions of different genuses of R(x,t){\mathcal {R}(x,t)}, are called breaking curves or nonlinear caustics. The genus of R(x,t){\mathcal {R}(x,t)} is related to the number of oscillatory phases in the asymptotic solution of the integrable system at the point x, t. The evolution theorem ([10]) guarantees continuous evolution of the asymptotic solution in the space-time away from the breaking curves. In the case of the analytic scattering data f(z; x, t) (in the NLS case, f is a normalized logarithm of the reflection coefficient with time evolution included), the primary role in the breaking mechanism is played by a phase function á h(z;x,t){{\Im\,h(z;x,t)}}, which is closely related to the g function. Namely, a break can be caused ([10]) either through the change of topology of zero level curves of á h(z;x,t){\Im\,h(z;x,t)} (regular break), or through the interaction of zero level curves of á h(z;x,t){{\Im\,h(z;x,t)}} with singularities of f (singular break). Every time a breaking curve in the x, t plane is reached, one has to prove the validity of the nonlinear steepest descent asymptotics in the region across the curve.  相似文献   

12.
We characterize averages of ?l=1N|x - tl|a- 1{\prod_{l=1}^N|x - t_l|^{\alpha - 1}} with respect to the Selberg density, further constrained so that tl ? [0,x] (l=1,...,q){t_l \in [0,x] (l=1,\dots,q)} and tl ? [x,1] (l=q+1,...,N){t_l \in [x,1] (l=q+1,\dots,N)} , in terms of a basis of solutions of a particular Fuchsian matrix differential equation. By making use of the Dotsenko-Fateev integrals, the explicit form of the connection matrix from the Frobenius type power series basis to this basis is calculated, thus allowing us to explicitly compute coefficients in the power series expansion of the averages. From these we are able to compute power series for the marginal distributions of the tj (j=1,...,N){t_j (j=1,\dots,N)} . In the case q = 0 and α < 1 we compute the explicit leading order term in the x ? 0{x \to 0} asymptotic expansion, which is of interest to the study of an effect known as singularity dominated strong fluctuations. In the case q = 0 and a ? \mathbbZ+{\alpha \in \mathbb{Z}^+} , and with the absolute values removed, the average is a polynomial, and we demonstrate that its zeros are highly structured.  相似文献   

13.
Consider the KPZ equation [(u)\dot](t,x)=Du(t,x)+|?u(t,x)|2+W(t,x)\dot u(t,x)=\Delta u(t,x)+|\nabla u(t,x)|^2+W(t,x), xd, where W(t,x) is a space-time white noise. This paper investigates the question of whether, for some exponents h and z, k{mh}u(kz t, kx) converges in some sense as k?¥k\to\infty, and if so, what are the values of these exponents. The non-linear term in the KPZ equation is interpreted as a Wick product and the equation is solved in a suitable space of stochastic distributions. The main tools for establishing the scaling properties of the solution are those of white noise analysis, in particular, the Wiener chaos expansion. A notion of convergence in law in the sense of Wiener chaos is formulated and convergence in this sense of k{mh}u(kz t, kx) as kMX is established for various values of h and z depending on the dimension d.  相似文献   

14.
We extend some recent results of Lubinsky, Levin, Simon, and Totik from measures with compact support to spectral measures of Schrödinger operators on the half-line. In particular, we define a reproducing kernel S L for Schrödinger operators and we use it to study the fine spacing of eigenvalues in a box of the half-line Schrödinger operator with perturbed periodic potential. We show that if solutions u(ξ, x) are bounded in x by ${e^{\epsilon x}}We extend some recent results of Lubinsky, Levin, Simon, and Totik from measures with compact support to spectral measures of Schr?dinger operators on the half-line. In particular, we define a reproducing kernel S L for Schr?dinger operators and we use it to study the fine spacing of eigenvalues in a box of the half-line Schr?dinger operator with perturbed periodic potential. We show that if solutions u(ξ, x) are bounded in x by eex{e^{\epsilon x}} uniformly for ξ near the spectrum in an average sense and the spectral measure is positive and absolutely continuous in a bounded interval I in the interior of the spectrum with x0 ? I{\xi_0\in I}, then uniformly in I,
\fracSL(x0 + a/L, x0 + b/L)SL(x0, x0)? \fracsin(pr(x0)(a - b))pr(x0)(a - b),\frac{S_L(\xi_0 + a/L, \xi_0 + b/L)}{S_L(\xi_0, \xi_0)}\rightarrow \frac{\sin(\pi\rho(\xi_0)(a - b))}{\pi\rho(\xi_0)(a - b)},  相似文献   

15.
Some authors found that, in different coordinates, the tunneling approach gives different Hawking temperature for the Schwarzschild black hole recently. In this paper, by studying the Hawking radiation of the Kerr black hole arising from the scalar and Dirac particles, we find that, to obtain the Hawking temperature by using tunneling effect, the coordinate representations for the stationary Kerr black hole should satisfy two conditions: (a) to keep the Killing vectors x(t)m{{\xi_{(t)}^\mu}} and x(j)m{{\xi_{(\varphi)}^\mu}} invariant; and (b) the radial coordinate transformation is a regular and non-zero function.  相似文献   

16.
The propagation of electromagnetic waves issued by modulated moving sources of the form j( t,x ) = a( t )e - iw0 t [(x)\dot]0 ( t )d( x - x0 ( t ) )j\left( {t,x} \right) = a\left( t \right)e^{ - i\omega _0 t} \dot x_0 \left( t \right)\delta \left( {x - x_0 \left( t \right)} \right) is considered, where j(t, x) stands for the current density vector, x = (x 1, x 2, x 3) ∈ ℝ3 for the space variables, t ∈ ℝ for time, tx 0(t) ∈ ℝ3 for the vector function defining the motion of the source, ω 0 for the eigenfrequency of the source, a(t) for a narrow-band amplitude, and δ for the standard δ function. Suppose that the media under consideration are dispersive. This means that the electric and magnetic permittivity ɛ(ω), μ(ω) depends on the frequency ω. We obtain a representation of electromagnetic fields in the form of time-frequency oscillating integrals whose phase contains a large parameter λ > 0 characterizing the slowness of the change of the amplitude a(t) and the velocity [(x)\dot]0 ( t )\dot x_0 \left( t \right) and a large distance between positions of the source and the receiver. Applying the two-dimensional stationary phase method to the integrals, we obtain explicit formulas for the electromagnetic field and for the Doppler effects. As an application of our approach, we consider the propagation of electromagnetic waves produced by moving source in a cold nonmagnetized plasma and the Cherenkov radiation in dispersive media.  相似文献   

17.
The DIS diffractive cross section, dsdiffg* p ? XN/dMXd\sigma^{di\!f\!f}_{\gamma^* p \to XN}/dM_X, has been measured in the mass range MX < 15M_X < 15 GeV for g*p\gamma^*p c.m. energies 60 < W < 20060 < W < 200 GeV and photon virtualities Q2 = 7Q^2 = 7 to 140 GeV2^2. For fixed Q2Q^2 and MXM_X, the diffractive cross section rises rapidly with WW, dsdiffg*p ? XN(MX,W,Q2)/dMX μ Wadiffd\sigma^{di\!f\!f}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}} with adiff = 0.507 ±0.034 (stat)+0.155-0.046(syst)a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst) corresponding to a t-averaged pomeron trajectory of [`( a\mathbb P )] = 1.127 ±0.009 (stat)+0.039-0.012 (syst)\overline{ \alpha_{_{{\mathbb P}}} } = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst) which is larger than [`( a\mathbb P )]\overline{ \alpha_{_{{\mathbb P}}} } observed in hadron-hadron scattering. The W dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function FD(3)2F^{D(3)}_2 factorizes according to x\mathbb P FD(3)2 (x\mathbb P,b,Q2) = (x0/ x\mathbb P)n FD(2)2(b,Q2)x_{_{{\mathbb P}}} F^{D(3)}_2 (x_{_{{\mathbb P}}},\beta,Q^2) = (x_0/ x_{_{{\mathbb P}}})^n F^{D(2)}_2(\beta,Q^2). They are also consistent with QCD based models which incorporate factorization breaking. The rise of x\mathbb P FD(3)2x_{_{{\mathbb P}}} F^{D(3)}_2 with decreasing x\mathbb Px_{_{{\mathbb P}}} and the weak dependence of FD(2)2F^{D(2)}_2 on Q2Q^2 suggest a substantial contribution from partonic interactions.  相似文献   

18.
We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to ?). For β large enough we show that for any ${\varepsilon >0 }We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to −). For β large enough we show that for any ${\varepsilon >0 }${\varepsilon >0 } there exists c=c(b,e){c=c(\beta,\varepsilon)} such that the corresponding mixing time T mix satisfies limL?¥ P(Tmix 3 exp(cLe)) = 0{{\rm lim}_{L\to\infty}\,{\bf P}\left(T_{\rm mix}\ge {\rm exp}({cL^\varepsilon})\right) =0}. In the non-random case τ ≡ +  (or τ ≡ −), this implies that Tmix £ exp(cLe){T_{\rm mix}\le {\rm exp}({cL^\varepsilon})}. The same bound holds when the boundary conditions are all +  on three sides and all − on the remaining one. The result, although still very far from the expected Lifshitz behavior T mix = O(L 2), considerably improves upon the previous known estimates of the form Tmix £ exp(c L\frac 12 + e){T_{\rm mix}\le {\rm exp}({c L^{\frac 12 + \varepsilon}})}. The techniques are based on induction over length scales, combined with a judicious use of the so-called “censoring inequality” of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.  相似文献   

19.
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Wbh2 = 0.02263+0.00184-0.00162 (1s)+0.00213-0.00195 (2s){\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}, Bs = 0.7788+0.0736-0.0723(1s)+0.0918-0.0904 (2s){B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}, a = 0.1079+0.3397-0.2539 (1s)+0.4678-0.2911 (2s){\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}, B = 0.00189+0.00583-0.00756(1s)+0.00660-0.00915 (2s){B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}, and H0=70.711+4.188-3.142 (1s)+5.281-4.149(2s){H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}.  相似文献   

20.
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \({{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}\) denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x 1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ (1)(x) + |x 1|ψ (2)(x) with ψ (1), ψ (2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号