首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, the permutation-information theoretic approach has been used in a broad range of research fields. In particular, in the study of high-dimensional dynamical systems, it has been shown that this approach can be effective in characterizing global properties, including the complexity of their spatiotemporal dynamics. Here, we show that this approach can also be applied to reveal local spatiotemporal profiles of distributed computations existing at each spatiotemporal point in the system. J. T. Lizier et al. have recently introduced the concept of local information dynamics, which consists of information storage, transfer, and modification. This concept has been intensively studied with regard to cellular automata, and has provided quantitative evidence of several characteristic behaviors observed in the system. In this paper, by focusing on the local information transfer, we demonstrate that the application of the permutation-information theoretic approach, which introduces natural symbolization methods, makes the concept easily extendible to systems that have continuous states. We propose measures called symbolic local transfer entropies, and apply these measures to two test models, the coupled map lattice (CML) system and the Bak-Sneppen model (BS-model), to show their relevance to spatiotemporal systems that have continuous states. In the CML, we demonstrate that it can be successfully used as a spatiotemporal filter to stress a coherent structure buried in the system. In particular, we show that the approach can clearly stress out defect turbulences or Brownian motion of defects from the background, which gives quantitative evidence suggesting that these moving patterns are the information transfer substrate in the spatiotemporal system. We then show that these measures reveal qualitatively different properties from the conventional approach using the sliding window method, and are also robust against external noise. In the BS-model, we demonstrate that these measures can provide novel insight to the model, featuring how symbolic local information transfer is related to the dynamical properties of the elements involved in a spatiotemporal dynamics.  相似文献   

2.
3.
《Physics letters. A》2020,384(28):126739
I introduce an algorithm to detect one-way quantum information between two interacting quantum systems, i.e. the direction and orientation of the information transfer in arbitrary quantum dynamics. I then build an information-theoretic quantifier of one-way information which satisfies a set of desirable axioms. In particular, it correctly evaluates whether correlation implies one-way quantum information, and when the latter is transferred between uncorrelated systems. In the classical scenario, the quantity measures information transfer between random variables. I also generalize the method to identify and rank concurrent sources of quantum information flow in many-body dynamics, enabling to reconstruct causal patterns in complex networks.  相似文献   

4.
Bell inequalities were created with the goal of improving the understanding of foundational questions in quantum mechanics. To this end, they are typically applied to measurement results generated from entangled systems of particles. They can, however, also be used as a statistical tool for macroscopic systems, where they can describe the connection strength between two components of a system under a causal model. We show that, in principle, data from macroscopic observations analyzed with Bell’ s approach can invalidate certain causal models. To illustrate this use, we describe a macroscopic game setting, without a quantum mechanical measurement process, and analyze it using the framework of Bell experiments. In the macroscopic game, violations of the inequalities can be created by cheating with classically defined strategies. In the physical context, the meaning of violations is less clear and is still vigorously debated. We discuss two measures for optimal strategies to generate a given statistic that violates the inequalities. We show their mathematical equivalence and how they can be computed from CHSH-quantities alone, if non-signaling applies. As a macroscopic example from the financial world, we show how the unfair use of insider knowledge could be picked up using Bell statistics. Finally, in the discussion of realist interpretations of quantum mechanical Bell experiments, cheating strategies are often expressed through the ideas of free choice and locality. In this regard, violations of free choice and locality can be interpreted as two sides of the same coin, which underscores the view that the meaning these terms are given in Bell’s approach should not be confused with their everyday use. In general, we conclude that Bell’s approach also carries lessons for understanding macroscopic systems of which the connectedness conforms to different causal structures.  相似文献   

5.
We report that transfer entropy estimates obtained from low-resolution and/or small data sets show net information flow away from a purely anticipatory element whereas transfer entropy calculated using exact distributions show the flow towards it. This means that for real-world data sets anticipatory elements can appear to be strongly driving the network dynamics even when there is no possibility of such an influence. Furthermore, we show that in the low-resolution limit there is no statistic that can distinguish anticipatory elements from causal ones.  相似文献   

6.
The interaction between the flow of sentiment expressed on blogs and media and the dynamics of the stock market prices are analyzed through an information-theoretic measure, the transfer entropy, to quantify causality relations. We analyzed daily stock price and daily social media sentiment for the top 50 companies in the Standard & Poor (S&P) index during the period from November 2018 to November 2020. We also analyzed news mentioning these companies during the same period. We found that there is a causal flux of information that links those companies. The largest fraction of significant causal links is between prices and between sentiments, but there is also significant causal information which goes both ways from sentiment to prices and from prices to sentiment. We observe that the strongest causal signal between sentiment and prices is associated with the Tech sector.  相似文献   

7.
We introduce a local version of the Shannon entropy in order to describe information transport in spatially extended dynamical systems, and to explore to what extent information can be viewed as a local quantity. Using an appropriately defined information current, this quantity is shown to obey a local conservation law in the case of one-dimensional reversible cellular automata with arbitrary initial measures. The result is also shown to apply to one-dimensional surjective cellular automata in the case of shift-invariant measures. Bounds on the information flow are also shown.  相似文献   

8.
From the structure of quantum dynamics for closed and open systems, we describe several general results about information flow between interacting systems, which can be expressed in diagrammatic form. Conditions on information flow (e.g., that no information is transferred from system A to system B) imply that the overall dynamical evolution has a particular structure. We also remark that one simple type of two-qubit interaction, the unitary CNOT gate, cannot be represented by local operations and a single simultaneous information exchange.  相似文献   

9.
Apnea and other breathing-related disorders have been linked to the development of hypertension or impairments of the cardiovascular, cognitive or metabolic systems. The combined assessment of multiple physiological signals acquired during sleep is of fundamental importance for providing additional insights about breathing disorder events and the associated impairments. In this work, we apply information-theoretic measures to describe the joint dynamics of cardiorespiratory physiological processes in a large group of patients reporting repeated episodes of hypopneas, apneas (central, obstructive, mixed) and respiratory effort related arousals (RERAs). We analyze the heart period as the target process and the airflow amplitude as the driver, computing the predictive information, the information storage, the information transfer, the internal information and the cross information, using a fuzzy kernel entropy estimator. The analyses were performed comparing the information measures among segments during, immediately before and after the respiratory event and with control segments. Results highlight a general tendency to decrease of predictive information and information storage of heart period, as well as of cross information and information transfer from respiration to heart period, during the breathing disordered events. The information-theoretic measures also vary according to the breathing disorder, and significant changes of information transfer can be detected during RERAs, suggesting that the latter could represent a risk factor for developing cardiovascular diseases. These findings reflect the impact of different sleep breathing disorders on respiratory sinus arrhythmia, suggesting overall higher complexity of the cardiac dynamics and weaker cardiorespiratory interactions which may have physiological and clinical relevance.  相似文献   

10.
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.  相似文献   

11.
Uncovering causal interdependencies from observational data is one of the great challenges of a nonlinear time series analysis. In this paper, we discuss this topic with the help of an information-theoretic concept known as Rényi’s information measure. In particular, we tackle the directional information flow between bivariate time series in terms of Rényi’s transfer entropy. We show that by choosing Rényi’s parameter α, we can appropriately control information that is transferred only between selected parts of the underlying distributions. This, in turn, is a particularly potent tool for quantifying causal interdependencies in time series, where the knowledge of “black swan” events, such as spikes or sudden jumps, are of key importance. In this connection, we first prove that for Gaussian variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also partially extend these results to heavy-tailed α-Gaussian variables. These results allow establishing a connection between autoregressive and Rényi entropy-based information-theoretic approaches to data-driven causal inference. To aid our intuition, we employed the Leonenko et al. entropy estimator and analyzed Rényi’s information flow between bivariate time series generated from two unidirectionally coupled Rössler systems. Notably, we find that Rényi’s transfer entropy not only allows us to detect a threshold of synchronization but it also provides non-trivial insight into the structure of a transient regime that exists between the region of chaotic correlations and synchronization threshold. In addition, from Rényi’s transfer entropy, we could reliably infer the direction of coupling and, hence, causality, only for coupling strengths smaller than the onset value of the transient regime, i.e., when two Rössler systems are coupled but have not yet entered synchronization.  相似文献   

12.
This study addresses the problem of learning a summary causal graph on time series with potentially different sampling rates. To do so, we first propose a new causal temporal mutual information measure for time series. We then show how this measure relates to an entropy reduction principle that can be seen as a special case of the probability raising principle. We finally combine these two ingredients in PC-like and FCI-like algorithms to construct the summary causal graph. There algorithm are evaluated on several datasets, which shows both their efficacy and efficiency.  相似文献   

13.
In this paper we describe three methods that can be used to measure the transient response of organic and polymer field-effect transistors (FETs) and also how such measurements can be used to determine the drift mobility and velocity. The first method measures the response of a FET to a step voltage applied to the source with the gate grounded and the drain held at close to ground, while the second uses a ramp input to the source. The third technique evaluates the frequency response of the FET, connected as a diode, to a large-signal alternating voltage. We show that important information can be obtained from such measurements which can be quantitatively interpreted with the help of models that we are developing. In general, there is good agreement between the drift mobility measured with these approaches and the field-effect mobility calculated from transistor output and transfer characteristics. The specific results we present in this paper are for pentacene devices; however, other recent work by our group indicates that these results are more general.  相似文献   

14.
The Ryu–Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu–Takayanagi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than as a surface. In this paper, we consider null rays emitted from the AdS boundary and construct a flow representing the causal holographic information. We present a sufficient and necessary condition that the causal information surface coincides with Ryu–Takayanagi surface. In particular, we show that, in spherical symmetric static spacetimes with a negative cosmological constant, wave fronts of null geodesics from a point on the AdS boundary become extremal surfaces and therefore they can be regarded as the Ryu–Takayanagi surfaces. In addition, from the viewpoint of flow, we propose a wave optical formula to calculate the causal holographic information.  相似文献   

15.
16.
Distributed computation can be described in terms of the fundamental operations of information storage, transfer, and modification. To describe the dynamics of information in computation, we need to quantify these operations on a local scale in space and time. In this paper we extend previous work regarding the local quantification of information storage and transfer, to explore how information modification can be quantified at each spatiotemporal point in a system. We introduce the separable information, a measure which locally identifies information modification events where separate inspection of the sources to a computation is misleading about its outcome. We apply this measure to cellular automata, where it is shown to be the first direct quantitative measure to provide evidence for the long-held conjecture that collisions between emergent particles therein are the dominant information modification events.  相似文献   

17.
A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on a fixed Eulerian mesh. The solid’s deformation is tracked to compute elastic stresses by an overlapping Lagrangian mesh. In this way, the flow–structure interaction is formulated as a distributed body force and singular surface force acting on an otherwise purely fluid system. These forces, which depend on the solid elastic stress distribution, are computed on the Lagrangian mesh by a standard finite-element method and then transferred to the fixed Eulerian mesh, where the joint momentum and continuity equations are solved by a finite-difference method. The constitutive model for the solid can be quite general. For the force transfer, standard immersed-boundary and immersed-interface methods can be used and are demonstrated. We have also developed and demonstrated a new projection method that unifies the transfer of the surface and body forces in a way that exactly conserves momentum; the interface is still effectively sharp for this approach. The spatial convergence of the method is observed to be between first- and second-order, as in most immersed-boundary methods for membrane flows. The algorithm is demonstrated by the simulations of an advected elastic disk, a flexible leaflet in an oscillating flow, and a model of a swimming jellyfish.  相似文献   

18.
韩振海  丁冬生 《中国物理 B》2016,25(12):124201-124201
We report on an experiment on transferring an image through coherent population trapping(CPT) effect in a hot rubidium vapor. We demonstrate experimentally that an image can be transferred from a control light to a probe light.Moreover, we describe the demonstration that the image can be transferred from a control light to two different probes showing a feasibility of transferring an image onto multiple probes. We believe that this effect definitely has important applications in image metrology, high dimensional information transfer in quantum information field, etc.  相似文献   

19.
The map equation   总被引:1,自引:0,他引:1  
Many real-world networks are so large that we must simplify their structure before we can extract useful information about the systems they represent. As the tools for doing these simplifications proliferate within the network literature, researchers would benefit from some guidelines about which of the so-called community detection algorithms are most appropriate for the structures they are studying and the questions they are asking. Here we show that different methods highlight different aspects of a network's structure and that the the sort of information that we seek to extract about the system must guide us in our decision. For example, many community detection algorithms, including the popular modularity maximization approach, infer module assignments from an underlying model of the network formation process. However, we are not always as interested in how a system's network structure was formed, as we are in how a network's extant structure influences the system's behavior. To see how structure influences current behavior, we will recognize that links in a network induce movement across the network and result in system-wide interdependence. In doing so, we explicitly acknowledge that most networks carry flow. To highlight and simplify the network structure with respect to this flow, we use the map equation. We present an intuitive derivation of this flow-based and information-theoretic method and provide an interactive on-line application that anyone can use to explore the mechanics of the map equation. The differences between the map equation and the modularity maximization approach are not merely conceptual. Because the map equation attends to patterns of flow on the network and the modularity maximization approach does not, the two methods can yield dramatically different results for some network structures. To illustrate this and build our understanding of each method, we partition several sample networks. We also describe an algorithm and provide source code to efficiently decompose large weighted and directed networks based on the map equation.  相似文献   

20.
本文把由温度引起密度变化的运动流体称为热可压流,并由无因次加热数来度量其压缩程度。它有别于气体动力学中以马赫数度量压缩性的由速度(因而压力)变化导致密度变化的可压缩流。列举和讨论了热可压流流动和传热的一些特征现象,它可望用于发展一些新的热控制技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号