首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
da Rocha  Zélia 《Numerical Algorithms》1999,20(2-3):139-164
This paper is concerned with the Shohat-Favard, Chebyshev and Modified Chebyshev methods for d-orthogonal polynomial sequences d∈ℕ. Shohat-Favard’s method is presented from the concept of dual sequence of a sequence of polynomials. We deduce the recurrence relations for the Chebyshev and the Modified Chebyshev methods for every d∈ℕ. The three methods are implemented in the Mathematica programming language. We show several formal and numerical tests realized with the software developed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In this paper, the dynamics of King’s family of iterative schemes for solving nonlinear equations is studied. The parameter spaces are presented, showing the complexity of the family. The analysis of the parameter space allows us to find elements of the family that have bad convergence properties, and also other ones with stable behavior.  相似文献   

4.
We consider Hamiltonian systems on (T*?2, dqdp) defined by a Hamiltonian function H of the “classical” form H = p 2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = ?∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.  相似文献   

5.
6.
In this work we devise efficient algorithms for finding the search directions for interior point methods applied to linear programming problems. There are two innovations. The first is the use of updating of preconditioners computed for previous barrier parameters. The second is an adaptive automated procedure for determining whether to use a direct or iterative solver, whether to reinitialize or update the preconditioner, and how many updates to apply. These decisions are based on predictions of the cost of using the different solvers to determine the next search direction, given costs in determining earlier directions. We summarize earlier results using a modified version of the OB1-R code of Lustig, Marsten, and Shanno, and we present results from a predictor–corrector code PCx modified to use adaptive iteration. If a direct method is appropriate for the problem, then our procedure chooses it, but when an iterative procedure is helpful, substantial gains in efficiency can be obtained.  相似文献   

7.
We derive Huygens’ principle for electrodynamics in terms of 4-vector potentials defined as distributions supported on a surface surrounding the charge-current density. By combining the Pauli algebra with distribution theory, a compact and conceptually simple derivation of the Stratton-Chu and Kottler-Franz equations is obtained. These are extended to freely moving integration surfaces, so that the fields due to charge distributions in arbitrary motion are represented. A further generalization is obtained to multiple surfaces, which can be used to enclose clusters of transmitters, scatterers and receivers.  相似文献   

8.
9.
Let Δ be a simplicial complex on V = {x 1, . . . , x n }, with Stanley–Reisner ideal ${I_{\Delta}\subseteq R=k[x_1,\ldots, x_n]}Let Δ be a simplicial complex on V = {x 1, . . . , x n }, with Stanley–Reisner ideal ID í R=k[x1,?, xn]{I_{\Delta}\subseteq R=k[x_1,\ldots, x_n]} . The goal of this paper is to investigate the class of artinian algebras A=A(D,a1,?,an) = R/(ID,x1a1,?,xnan){A=A(\Delta,a_1,\ldots,a_n)= R/(I_{\Delta},x_1^{a_1},\ldots,x_n^{a_n})} , where each a i ≥ 2. By utilizing the technique of Macaulay’s inverse systems, we can explicitly describe the socle of A in terms of Δ. As a consequence, we determine the simplicial complexes, that we will call levelable, for which there exists a tuple (a 1, . . . , a n ) such that A(Δ, a 1, . . . , a n ) is a level algebra.  相似文献   

10.
11.
12.
In this paper, the Laguerre–Sheffer polynomials are introduced by using the monomiality principle formalism and operational methods. The generating function for the Laguerre–Sheffer polynomials is derived and a correspondence between these polynomials and the Sheffer polynomials is established. Further, differential equation, recurrence relations and other properties for the Laguerre–Sheffer polynomials are established. Some concluding remarks are also given.  相似文献   

13.
14.
The non-isospectral Ablowitz–Ladik hierarchy is integrated by the inverse scattering transform. In contrast with the isospectral Ablowitz–Ladik hierarchy, the eigenvalues of the non-isospectral Ablowitz–Ladik equations in the scattering data are time-dependent. The multi-soliton solution for the hierarchy is presented. The reductions to the non-isospectral discrete NLS hierarchy and the non-isospectral discrete mKdV hierarchy and their solutions are considered.  相似文献   

15.
n to Rm. Under the assumption of semi-smoothness of the mapping, we prove that the approximation can be obtained through the Clarke generalized Jacobian, Ioffe-Ralph generalized Jacobian, B-subdifferential and their approximations. As an application, we propose a generalized Newton’s method based on the point-based set-valued approximation for solving nonsmooth equations. We show that the proposed method converges locally superlinearly without the assumption of semi-smoothness. Finally we include some well-known generalized Newton’s methods in our method and consolidate the convergence results of these methods. Received October 2, 1995 / Revised version received May 5, 1998 Published online October 9, 1998  相似文献   

16.
17.
In this paper, we attempt to give a unified approach to the existing several versions of Ekeland’s variational principle. In the framework of uniform spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi’s nonconvex minimization theorem, a generalized Ekeland’s variational principle and a generalized Caristi’s fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland’s variational principle, we deduce a number of particular versions of Ekeland’s principle, which include many known versions of the principle and their improvements.  相似文献   

18.
19.
This paper deals with minimax problems for nonlinear differential expressions involving a vector-valued function of a scalar variable under rather conventional structure conditions on the cost function. It is proved that an absolutely minimizing (i.e. globally and locally minimizing) function is continuously differentiable. A minimizing function is also continuously differentiable, provided a certain extra condition is satisfied. The variational method of V.G. Boltyanskii, developed within optimal control theory, is adapted and used in the proof. The case of higher order derivatives is also considered.  相似文献   

20.
By using sequentially lower complete spaces (see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692 (2013)]), we give a new version of vectorial Ekeland’s variational principle. In the new version, the objective function is defined on a sequentially lower complete space and taking values in a quasi-ordered locally convex space, and the perturbation consists of a weakly countably compact set and a non-negative function p which only needs to satisfy p(x, y) = 0 iff x = y. Here, the function p need not satisfy the subadditivity. From the new Ekeland’s principle, we deduce a vectorial Caristi’s fixed point theorem and a vectorial Takahashi’s non-convex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. By considering some particular cases, we obtain a number of corollaries, which include some interesting versions of fixed point theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号