首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The assignment of high-field (18.8 T) (17)O MAS and 3QMAS spectra has been completed by use of first-principles calculations for three crystalline sodium phosphates, Na 3P 3O 9, Na 5P 3O 10, and Na 4P 2O 7. In Na 3P 3O 9, the calculated parameters, quadrupolar constant ( C Q), quadrupolar asymmetry (eta Q), and the isotropic chemical shift (delta cs) correspond to those deduced experimentally, and the calculation is mandatory to achieve a complete assignment. For the sodium tripolyphosphate Na 5P 3O 10, the situation is more complex because of the free rotation of the end-chain phosphate groups. The assignment obtained with ab initio calculations can however be confirmed by the (17)O{ (31)P} MAS-J-HMQC spectrum. Na 4P 2O 7 (17)O MAS and 3QMAS spectra show a complex pattern in agreement with the computed NMR parameters, which indicate that all of the oxygens exhibit very similar values. These results are related to structural data to better understand the influence of the oxygen environment on the NMR parameters. The findings are used to interpret those results observed on a binary sodium phosphate glass.  相似文献   

2.
The cationic coordinations of phosphate based gallium sodium glasses in the system Na2O-Ga2O3-P2O5 have been studied by several techniques (71Ga and 23Na MAS-NMR, EXAFS and vibrational spectroscopies) in order to study the relationship between the structure and the chemical composition. We found that three different environments are available for the gallium ions while it is very difficult to get accurate information on the sodium coordinations. Our data show that in orthophosphate glasses, gallium is mainly tetrahedral but when the mean phosphate chain length increases, its coordination becomes more and more octahedral. In these glassy structure, it becomes then possible to dissolve large amounts of typically octahedral cations like Fe3+ or Cr3+.  相似文献   

3.
The structural organization of sodium borophosphate glasses with composition (Na(2)O)(x)(BPO(4))(1-x) (0.25 ≤x≤ 0.55) has been investigated by differential scanning calorimetry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as single- and double resonance (11)B and (31)P magic-angle spinning (MAS) NMR. (11)B MAS-NMR data indicate the dominance of anionic four-coordinated boron units, and (31)P MAS NMR reveals the successive transformation of neutral P(3) into singly charged P(2) units and their further transformation into doubly charged P(1) units at high Na(2)O contents. The quantification of these units provides detailed insight into the competition of the network formers borate and phosphate for the network modifier oxide. At low modifier content (x < 0.35), the anionic species are almost exclusively borate (B(4)) units, whereas at higher sodium concentrations, large numbers of anionic phosphate (P(2) and P(1)) species are formed. O-1s XPS data provide a quantitative distinction between B-O-B, B-O-P, and P-O-P linkages as well as non-bridging oxygen atoms, and comparable numbers can be extracted from (11)B and (31)P MAS-NMR experiments. Both XPS as well as (31)P{(11)B} and (11)B{(31)P} rotational echo double resonance (REDOR) NMR results reveal strong interactions between the two network formers boron oxide and phosphorus oxide, resulting in a preferred formation of B-O-P linkages. For higher Na(2)O contents, however, the successive network modification diminishes this preference, resulting in close-to-statistical network connectivities. Compositional trends of T(g) in the Na(2)O-B(2)O(3)-P(2)O(5) glass forming system can be correlated with the overall network connectedness, expressed by the total number of bridging oxygen atoms per network former species. However, separate linear correlations are observed for different compositional lines, indicating also the relevance of the type of network former linkages present.  相似文献   

4.
The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.  相似文献   

5.
We report a solid state nuclear magnetic resonance study of (23)Na, (27)Al, and (31)P in two crystalline nitridophosphate phases, Na(3)AlP(3)O(9)N and Na(2)Mg(2)P(3)O(9)N, including two-dimensional multiple-quantum magic angle spinning (MQ-MAS) experiments on (23)Na to separate overlapping lines. The previously described single-crystal structure of Na(3)AlP(3)O(9)N gives crystallographic examples of Al(OP)(6) and P(O[Al,Na])(2)(ONa)(N[P,Na]) environments and three different environments of sodium: two Na(O)(6) and one Na(O)(6)(N). From these observations we characterize the modification of the local environment of phosphorus and show that Mg only substitutes Na in the Na2 site of the Na(2)Mg(2)P(3)O(9)N structure.  相似文献   

6.
A novel hexasodium disphosphopentamolybdate hydrate, Na6[P2Mo5O23]x7H2O, has been identified using X-ray powder diffraction, 1H, 23Na, and 31P magic-angle spinning (MAS) NMR, and 23Na multiple-quantum (MQ) MAS NMR. Powder XRD reveals that the hydrate belongs to the triclinic spacegroup P1 with cell dimensions a = 10.090(3) A, b = 15.448(5) A, c = 8.460(4) A, alpha = 101.45(6) degrees, beta = 104.09(2) degrees, gamma = 90.71(5) degrees, and Z = 2. The number of water molecules of crystallization has been determined on the basis of a quantitative evaluation of the 1H MAS NMR spectrum, the crystallographic unit cell volume, and a hydrogen content analysis. The 23Na MQMAS NMR spectra of Na6[P2Mo5O23]x7H2O, obtained at three different magnetic fields, clearly resolve resonances from six different sodium sites and allow a determination of the second-order quadrupolar effect parameters and isotropic chemical shifts for the individual resonances. These data are used to determine the quadrupole coupling parameters (CQ and eta Q) from simulations of the complex line shapes of the central transitions, observed in 23Na MAS NMR spectra at the three magnetic fields. This analysis illustrates the advantages of combining MQMAS and MAS NMR at moderate and high magnetic fields for a precise determination of quadrupole coupling parameters and isotropic chemical shifts for multiple sodium sites in inorganic systems. 31P MAS NMR demonstrates the presence of two distinct P sites in the asymmetric unit of Na6[P2Mo5O23].7H2O while the 31P chemical shielding anisotropy parameters, determined for this hydrate and for Na6[P2Mo5O23]x13H2O, show that these two hydrates can easily be distinguished using 31P MAS NMR.  相似文献   

7.
8.
The structures of sodium aluminophosphate glasses prepared by both sol-gel as well as melt-cooling routes have been extensively characterized by high-resolution solid-state 23Na, 27Al, and 31P single and double-resonance NMR techniques, including quantitative connectivity studies by 27Al <--> 31P and 23Na <--> 31P rotational echo double-resonance (REDOR) methods. Studies along four compositional lines, I: (AlPO4)x -(NaPO3)1-x, II: (Na2O)x -(AlPO4)1-x, III: (NaAlO2)x -(NaPO3)1-x, and IV: (Al2O3)x (NaPO3)1-x, reveal that the network structures of those glasses that are accessible by either preparation method are essentially identical. However, the significantly extended glass-forming ranges available by the sol-gel route facilitate exploration of the structure/composition relationships in more detail, revealing a number of interesting universal features throughout the whole glass system. Both short- and medium-range order appear to be controlled strongly by the O/P ratio of the glasses studied: Up to an O/P ratio of 3.5 (pyrophosphate composition), aluminum is predominantly six-coordinated and fully connected to phosphorus (Al(OP)6 sites). In the region 3.5 < or = O/P < or = 4.0, a dramatic structural transformation takes place, leading to the appearance of additional four- and five-coordinated aluminum species whose second coordination spheres are also entirely dominated by phosphorus. The structure of glasses with an O/P ratio of precisely 4.0 (orthophosphate) is dominated by Al(OP)4 units. As the O/P ratio increases beyond 4.0, the average extent of Al-O-P connectivity is decreased significantly. Here, new types of five- and six-coordinated aluminum units, which are only weakly connected to phosphorus, are formed, while the network modifier is attracted mainly by the phosphate units.  相似文献   

9.
Sodium phosphate tellurite glasses in the system (NaPO(3))(x)(TeO(2))(1-) (x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na(2)O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO(4/2) antiprismatic units. The combined interpretation of the O 1s XPS data and the (31)P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather, the formation of homoatomic P--O--P and Te--O--Te linkages is favored over mixed P--O--Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of (31)P/(23)Na rotational echo double-resonance (REDOR) experiments.  相似文献   

10.
The influence of three exogenous ligands (acetate, formate and carbonate) on the condensation process of the [Mo2O4]2+ dioxocation with the [O3PCH2PO3](4-) group has been investigated. Four cyclic or bicyclic compounds have been isolated and characterized by X-ray diffraction studies. Two closely related acetato and formato ovoidal duodecanuclear compounds, Na24[Na4(H2O)6[(Mo2O4)10(O3PCH2PO3)10(CH3COO)8(H2O)4]].103H2O (1) and Na28[Na2[(Mo2O4)10(O3PCH2PO3)10(HCOO)10]].110H2O (2), respectively, have been obtained. Their structures can be described as two interconnected nonequivalent wheels, delimiting a large cavity. When the condensation is performed in similar conditions but replacing carboxylato groups by carbonato ligands, the ellipsoidal octanuclear Na11[Na(H2O)2[(Mo2O4)4(O3PCH2PO3)4(CO3)2]].70H2O (3) compound is isolated. 31P NMR spectroscopic studies have shown that complexes 1 and 3 are stable in solution at room temperature. Nevertheless, on heating an aqueous solution of 3, the Na8[(Mo2O4)3(O3PCH2PO3)3(MoO4)].18H2O (4) complex, free of carbonato groups, is obtained. 4 is a hexanuclear Mo(V) wheel encapsulating a tetrahedral [Mo(VI)O4](2-) anion. Its rational synthesis using a controlled Mo(V)/Mo(VI) ratio is also presented.  相似文献   

11.
在H2O2-Na2S2O3反应体系中,pH值和[H2O2]0/[Na2S2O3]0对反应产物的浓度大小起着关键作用.本文通过考察这两种因素对反应产物的影响,以及对反应机理的模拟,得出了pH值和氧化剂与还原剂浓度比影响反应产物浓度的一般规律.结果表明:pH< 3时,反应主要生成单质硫, 3< pH< 6时, 较为稳定,提高pH和[H2O2]0/[Na2S2O3]0有利于SO42-生成,在中性或弱碱性溶液中S(Ⅳ)(HSO42-或SO32-)物质浓度出现峰值.  相似文献   

12.
Vitreous samples were prepared in the (100 - x)% NaPO(3)-x% MoO(3) (0 相似文献   

13.
The speciation in the aqueous H(+)/H(2)VO(4)(-)/phosphate (dihydrogen phosphate, P(-)) and H(+)/H(2)VO(4)(-)/H(2)O(2)/P(-) systems has been determined in the physiological medium of 0.150 M Na(Cl) at 25 degrees C. A combination of multinuclear NMR integral and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and treated simultaneously by the computer program LAKE. The pK(a)-values for phosphoric acid have been determined by potentiometric and (31)P NMR chemical shift data, and have been found to be 1.85 +/- 0.02, 6.69 +/- 0.02 and 11.58 +/- 0.07. The errors given are 3sigma. Altogether nine vanadate-phosphate species have been found in the ternary H(+)/H(2)VO(4)(-)/P(-) system in the pH region 1-11, with the following compositions: VP, VP(2) and V(14)P. Equilibrium is very slow in acidic solutions, requiring more than 3 months for the formation of V(14)P species. On the other hand, less than 15 min are needed for equilibration at neutral and alkaline pH. In the quaternary H(+)/H(2)VO(4)(-)/H(2)O(2)/P(-) system, four new species have been found in addition to all binary and ternary complexes. They are of VXP and VX(2)P compositions, where X denotes the peroxo ligand. (51)V and (31)P NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. Biological and medical relevance of the species is also discussed and physiological conditions are modelled.  相似文献   

14.
We have used multinuclear NMR and IR spectroscopy to study the interaction of a number of metal cations with monovacant heteropolyanion [P(2)W(20)O(7)(0)(H(2)O)(2)](10)(-) (P(2)W(20)) in aqueous solutions starting from its K salt. We have also prepared and studied P(2)W(20) in an Na-only medium. The observed differences in the NMR spectra of NaP(2)W(20)and KP(2)W(20)solutions and the importance of K(+) and Na(+) for the formation of P(2)W(20) suggest that this polyanion exists only as a complex with the alkaline cations. When both cations were simultaneously present in solution, we observed the broadening of the NMR signals of P(2)W(20)due to the Na-K exchange. Li(+) does not replace K(+) or Na(+) in such complexes, and in an Li-only medium P(2)W(20) does not form. Of all the M(n)(+) cations studied (Pd(2+), Bi(3+), Sn(4+), Zr(4+), Ce(4+), Ti(4+), V(5+), and Mo(6+)) only Bi(3+), Sn(4+), and Ce(4+) form complexes with P(2)W(20) in strongly acidic solutions. The (183)W and (119)Sn NMR data suggest that Sn(4+) forms in solution two mutually interconvertable P(2)W(20)Sn complexes of the composition P(2)W(20)O(70)(H(2)O)(3)SnOH(7)(-) and (P(2)W(20)O(70)(H(2)O)(3)Sn)(2)O(14)(-) while Bi(3+) forms one complex of the proposed composition P(2)W(20)O(70)(H(2)O)(2)Bi.(7)(-) We obtained complexes with Bi and Sn as free heteropoly acids and studied their thermostability in the solid state.  相似文献   

15.
The reaction of the trivacant Dawson anion alpha-[P(2)W(15)O(56)](12-) and the divalent cations Co(2+) is known to form the tetracobalt sandwich complex [Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-) (Co(4)P(4)W(30)). Two new complexes, with different Co/P(2)W(15) stoichiometry, [(NaOH(2))(2)Co(2)(P(2)W(15)O(56))(2)](18-) (Na(2)Co(2)P(4)W(30)) and [(NaOH(2))Co(3)(H(2)O)(P(2)W(15)O(56))(2)](17-) (NaCo(3)P(4)W(30)), have been synthesized as aqueous-soluble sodium salts, by a slight modification of the reaction conditions. Both compounds were characterized by IR, elemental analysis, and (31)P solution NMR spectroscopy. These species are "lacunary" sandwich complexes, which add Co(2+) cations according to Na(2)Co(2)P(4)W(30) + Co(2+) --> NaCo(3)P(4)W(30) + Na(+) followed by NaCo(3)P(4)W(30) + Co(2+) --> Co(4)P(4)W(30) + Na(+). A Li(+)/Na(+) exchange in the cavity was evidenced by (31)P dynamic NMR spectroscopy. The electrochemical behaviors of the sandwich complexes [(NaOH(2))Co(3)(H(2)O)(P(2)W(15)O(56))(2)](17-) and [(NaOH(2))(2)Co(2)(P(2)W(15)O(56))(2)](18-) were investigated in aqueous solutions and compared with that of [Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-). These complexes showed an electrocatalytic effect on nitrite reduction.  相似文献   

16.
The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb(PO(3))(2).xAI(PO(3))(3) with 0 < or = x < or = 1 were analyzed to determine the effect of the substitution of Pb by AI on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)AI, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for AI decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent AI-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in AI. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AIO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AIO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AIO(n) polyhedra. There is no corner sharing of O between AIO(n) and PbO(n) polyhedra nor between AIO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-AI and Ca-AI metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.  相似文献   

17.
Lii KH  Chen CY 《Inorganic chemistry》2000,39(15):3374-3378
The first metal phosphatooxalate containing a chiral amine, (R-C5H14N2)2[Ga4(C2O4)(H2PO4)2(PO4)4].2H2O, has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction and 31P MAS NMR spectroscopy. It crystallizes in the monoclinic space group P2(1) (No. 4) with a = 8.0248(4) A, b = 25.955(1) A, c = 9.0127(5) A, beta = 100.151(1) degrees, and Z = 2. The structure consists of GaO6 octahedra and GaO4 tetrahedra connected by coordinating C2O4(2-) and phosphate anions to form anionic sheets in the ac plane with charge-compensating diprotonated R-2-methylpiperazinium cations and water molecules between the layers. There is a good correlation between the NMR spectrum and the structure.  相似文献   

18.
Glasses having the composition (100 - x)As2P2S8-xGa2S3 with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (Tg) and the stability parameter against crystallization (Tx - Tg) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and 31P nuclear magnetic resonance. On the basis of the observed vibrations and the strength of the 31P-31P homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x or= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS 4/2 unit (Q4) species carrying a single positive formal charge.  相似文献   

19.
Cao J  Yu X  Kuang X  Su Q 《Inorganic chemistry》2012,51(14):7788-7793
Phase relationships in the BaO-Ga(2)O(3)-Ta(2)O(5) ternary system at 1200 °C were determined. The A(6)B(10)O(30) tetragonal tungsten bronze (TTB) related solution in the BaO-Ta(2)O(5) subsystem dissolved up to ~11 mol % Ga(2)O(3), forming a ternary trapezoid-shaped TTB-related solid solution region defined by the BaTa(2)O(6), Ba(1.1)Ta(5)O(13.6), Ba(1.58)Ga(0.92)Ta(4.08)O(13.16), and Ba(6)GaTa(9)O(30) compositions in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Two ternary phases Ba(6)Ga(21)TaO(40) and eight-layer twinned hexagonal perovskite solid solution Ba(8)Ga(4-x)Ta(4+0.6x)O(24) were confirmed in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Ba(6)Ga(21)TaO(40) crystallized in a monoclinic cell of a = 15.9130(2) ?, b = 11.7309(1) ?, c = 5.13593(6) ?, β = 107.7893(9)°, and Z = 1 in space group C2/m. The structure of Ba(6)Ga(21)TaO(40) was solved by the charge flipping method, and it represents a three-dimensional (3D) mixed GaO(4) tetrahedral and GaO(6)/TaO(6) octahedral framework, forming mixed 1D 5/6-fold tunnels that accommodate the Ba cations along the c axis. The electrical property of Ba(6)Ga(21)TaO(40) was characterized by using ac impedance spectroscopy.  相似文献   

20.
The P(2)O(5)-water system has the widest range of continuously glass-forming compositions known for any glassformer + water binary system. Despite the great range of structures explored by the glasses and liquids in this system, the glass transition temperature (T(g)) itself varies in a simple monotonic fashion. However the values of T(g) reported in the literature show wide disagreement, linked to the different methods of measurement employed. In this work we use differential scanning calorimetry (DSC) to obtain both T(g) itself and the jump in heat capacity that occurs as the metastable equilibrium of the supercooled liquid relieves the non-ergodic glassy state. Our study covers the molar ratio range of H(2)O/P(2)O(5) from 1.5 to 14 (corresponding to the mass fraction of P(2)O(5) between 0.36 and 0.84), which includes the compositions corresponding to pyrophosphoric acid (H(4)P(2)O(7)) and orthophosphoric acid (H(3)PO(4)). The theoretical model of Couchman and Karasz predicts very well the glass transition temperatures of the P(2)O(5)-H(2)O system over the whole composition range if the relatively large heat capacity change associated with water in aqueous solutions at the glass transition temperature is adopted, instead of the vanishingly small value observed for vapor deposited or hyperquenched pure water. Therefore, solvent water in this ambient pressure P(2)O(5)-H(2)O system behaves like a different liquid, more closely resembling a high-density liquid (HDL) polyamorph, as suggested by Mishima for electrolytes at high pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号