首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weakly fluorescent coumarinyl enones are rapidly transformed into strongly fluorescent molecules through the Michael addition reaction of a thiol group, where an intramolecular hydrogen bond plays a critical role in the reaction rate. The molecular probe (3) with an ortho hydroxyl group to a carbonyl group exhibits a rapid response toward GSH owing to the stabilization of the possible oxyanion intermediate by a preferable intramolecular hydrogen bond. Probe 1 with an o-hydroxyl group also showed a moderately enhanced reaction rate with GSH and soluble in HEPES buffer to exhibit a highly selective and sensitive fluorescence turn-on response toward biothiols.  相似文献   

2.
A weakly fluorescent coumarinyl aldehyde was transformed into a strongly fluorescent aldol product by a catalytic amount of proline. The aldehyde probe has shown a highly selective fluorescence turn-on response toward proline over other amino acids with micromolar sensitivity.  相似文献   

3.
Enone-functionalized benzochromene chemodosimeter (1) was prepared through the Baylis-Hillman condensation reaction and was utilized as a ratiometric fluorescence probe for cyanide anions in aqueous buffer. The probe has shown a selective and sensitive response to cyanides over other various anions through the Michael addition and a subsequent [1,3]-sigmatropic rearrangement reaction. When cyanide anions were added, a prominent ratiometric fluorescence change of 1 was observed thus allowing to detect the micromolar concentration of cyanides by the naked eye.  相似文献   

4.
Two fluorescence probes for the detection of cysteine (Cys), glutathione (GSH) and other biothiols, such as homocysteine (Hcy) and cysteinyl-glycine (Cys-Gly), were developed. These molecular probes are coumarin-based derivatives containing a chalcone-like moiety that reacts with biothiols through a Michael addition reaction, leading to strong fluorescence enhancements. The reactivity of the tested biothiols toward both probes (ChC1 and ChC2) follows the order Cys > GSH > Hcy > Cys-Gly, ChC1 being less reactive than ChC2. Possible interference with other amino acids was assessed. ChC1 and ChC2 display a highly selective fluorescence enhancement with thiols, allowing these probes to be used for fluorimetric thiol determination in SH-SY5Y cells.  相似文献   

5.
An imidazolethione based turn-on fluorescent probe was synthesized for the detection of hydrogen sulfide, a biologically relevant molecule and an important air pollutant. The probe rapidly and selectively reacted with hydrogen sulfide to produce a strongly fluorescent product, resulting in the fluorescence enhancement of the system. The detection limit was determined to be 30 nM at the probe concentration of 1.0 μM. An indicating paper for visual detection of hydrogen sulfide gas has been fabricated by immobilizing the probe on a piece of appropriate paper substrate, and the detection limit of the visual method reached as low as 0.7 ppm. Moreover, the fluorescence turn-on/off of the system showed good reversibility when exposed alternately to hydrogen sulfide and mercuric ion, which was utilized to make an INHIBIT logic circuit for the presence of the two species.  相似文献   

6.
A simple azide-functionalized coumarin (1) was utilized as a fluorescence turn-on probe for a catalytic amount of Cu(I) ions in HEPES buffer. The probe has shown a selective and sensitive response to the cuprous ions over other various cations through a Cu(I)-mediated click reaction of 1 to an alkyne. When a catalytic amount of copper sulfates was added in the presence of ascorbate, the prominent fluorescence ‘Off-On’ change of 1 was observed so that submicromolar concentration of copper ions was detectable by the naked eye.  相似文献   

7.
Rhodamine B hydroxylamide (1) is characterized as a highly selective and sensitive fluorescence probe for Cu2+. Under the optimized conditions, the probe exhibits specific absorbance-on and fluorescence-on responses to Cu2+ only. This remarkable property may allow Cu2+ to be detected directly in the presence of the other transition metal ions, and such an application has been demonstrated to human serum. The reaction mechanism is also investigated and proposed as that the hydroxylamide group of 1 binds Cu2+, and the subsequent complexation of Cu2+ displays a high catalytic activity for the hydrolytic cleavage of the amide bond, causing the release of fluorophore (rhodamine B) and thereby the retrievement of absorbance and fluorescence. The recovered fluorescence intensity is proportional to the concentration of Cu2+ in the range 1-20 μM. The detection limit for Cu2+ is 33 nM (k = 3). The reaction mechanism described here may be useful for developing excellent spectroscopic probes with cleavable active bonds for other analytes.  相似文献   

8.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

9.
A highly selective fluorescent chemodosimeter based on rhodamine is synthesized which undergoes Cu(2+) driven hydrolysis in aqueous media to produce fluorescence turn-on changes with a detection limit up to the nanomolar range.  相似文献   

10.
A selective and sensitive turn-on fluorescent NIR probe for cysteine has been developed. Cleavage of 2,4-dinitrobenzenesulfonyl (DNBS) with thiols switches the weakly fluorescent aza-BODIPY dye (λ(em) = 734 nm, Φ(f) = 0.03) to a strongly fluorescent species in the NIR region (λ(em) = 755 nm, Φ(f) = 0.14).  相似文献   

11.
A novel fluorescence turn-on microRNA (miRNA) detection method based on duplex-specific nuclease (DSN) and a perylene probe is presented in this study. A positively charged perylene derivative (compound 1) was used as the fluorescent probe. Compound 1 exhibits strong monomer fluorescence in an aqueous buffer solution. It is well known that single-stranded DNA is a polyanion in nature. Thus, it can induce the aggregation of compound 1 through strong electrostatic, hydrophobic and π−π stacking interactions. As a result, the fluorescence of compound 1 was efficiently quenched. When the target miRNA was added, the formation of DNA-RNA hybridized duplex initiated the cleavage of the DNA strand by DSN cycle reaction, which resulted in disaggregation of compound 1. A fluorescence turn-on signal was detected, and a novel miRNA sensing method was therefore established. The presented method is label-free, simple, cost effective, sensitive and selective.  相似文献   

12.
An activated Michael acceptor type of probe by an intramolecular hydrogen bond has shown a selective fluorescence turn-on response to cyanide through a conjugated addition of the nucleophilic anion to the enone probe with a 1300-fold increase in its fluorescence intensity.  相似文献   

13.
A simple Schiff base type fluorescent receptor 1 was prepared and evaluated for its fluorescence response to heavy metal ions. Receptor 1 exhibits an ‘off-on-type’ mode with high selectivity in the presence of Zn2+ ion. The selectivity of 1 for Zn2+ is the consequence of combined effects of chelation-enhanced fluorescence (CHEF), CN isomerization, and inhibition of photoinduced electron transfer (PET).  相似文献   

14.
《中国化学快报》2020,31(12):3149-3152
Considering that hydrogen peroxide (H2O2) plays significant roles in oxidative stress, the cellular signal transduction and essential biological process regulation, the detection and imaging of H2O2 in living systems undertakes critical responsibility. Herein, we have developed a novel two-photon fluorescence turn on probe, named as Pyp-B for mitochondria H2O2 detection in living systems. Selectivity studies show that probe Pyp-B exhibit highly sensitive response toward H2O2 than other reactive oxygen species (ROS) and reactive nitrogen species (RNS) as well as biologically relevant species. The fluorescence colocalization studies demonstrate that the probe can localize in the mitochondria solely. Furthermore, as a bio-compatibility molecule, the highly selective and sensitive of fluorescence probe Pyp-B have been confirmed by its cell imaging application of H2O2 in living A549 cells and zebrafishes under the physiological conditions.  相似文献   

15.
Unmodified cysteamine capped nanocrystalline cadmium sulfide quantum dots (Cys-CdS QDs) were demonstrated as a selective turn-on fluorescence sensor for sensing adenosine-5′-triphosphate (ATP) in aqueous solution for the first time. The fluorescence intensity of the Cys-CdS QDs was significantly enhanced in the presence of ATP. In addition, the fluorescence intensity of the Cys-CdS QDs increased when increasing ATP concentrations. On the other hand, other phosphate metabolites and other tested common anions did not significantly alter the fluorescence intensity of the Cys-CdS QDs. In addition, this sensor showed excellent discrimination of pyrophosphate (PPi) from ATP detection. The proposed sensor could efficiently be used for ATP sensing at very low concentration with LOD of 17 μM with the linear working concentration range of 20–80 μM. The feasibility of the proposed sensor for determining ATP in urine samples was also studied, and satisfactory results were obtained.  相似文献   

16.
A turn-on fluorescent probe, based on a water-soluble terphenyl derivative, for the detection of cysteine and homocysteine is reported. The aldehyde groups in the probe play crucial roles in providing reaction with thiol groups in the amino acids, leading to a formation of thiazolidine (from cysteine) or thiazinane ring (from homocysteine). As a result, the new formation of such rings alters the electronic property of the conjugated system in the probe and results in emission enhancement. The probe in aqueous solution exhibits a remarkable increase in its quantum yield upon exposure to cysteine (up to 20-fold) and to homocysteine (up to 700-fold), while slight quenching is observed in the presence of glutathione. Moreover, an investigation on time-resolved fluorescence spectra of the probe in the presence of cysteine and homocysteine reveals potential discriminatory detection of cysteine and homocysteine. Bioimaging of the thiols in live HeLa cells was successfully applied.  相似文献   

17.
A rapid non-separative spectroflourimetric method based on the second-order calibration of the excitation-emission data matrix was proposed for the determination of glutathione (GSH) in human plasma. In the phosphate buffer solution of pH 8.0 GSH reacts with ortho-phthaldehyde (OPA) to yield a fluorescent adduct with maximum fluorescence intensity at about 420 nm. To handle the interfering effects of the OPA adducts with aminothiols other than GSH in plasma as well as intrinsic fluorescence of human plasma, parallel factor (PARAFAC) analysis as an efficient three-way calibration method was employed. In addition, to model the indirect interfering effect of the plasma matrix, PARAFAC was coupled with standard addition method. The two-component PARAFAC modeling of the excitation-emission matrix fluorescence spectra accurately resolved the excitation and emission spectra of GSH, plasma (or plasma constituents). The concentration-related PARAFAC score of GSH represented a linear correlation with the concentration of added GSH, similar to that is obtained in simple standard addition method. Using this standard addition curve, the GSH level in plasma was found to be 6.10 ± 1.37 μmol L−1. The accuracy of the method was investigated by analysis of the plasma samples spiked with 1.0 μmol L−1 of GSH and a recovery of 97.5% was obtained.  相似文献   

18.
Enantioselective Michael additions catalyzed by hydrogen-bonding catalysts produce many important compounds. Solvent-free reaction conditions in a ball mill can provide an improved enantioselectivity over the reaction in solution, due to lack of disruptive solvation of reagents. A range of 15 structurally different hydrogen-bonding organocatalysts were tested in two Michael additions to β-nitrostyrene under solvent-free conditions and compared with corresponding experiments in solution. With several thiourea catalysts, these Michael additions proceeded with higher enantioselectivities under solvent-free conditions than in solution.  相似文献   

19.
Hyperbranched poly(amido amine)s (HPAA) show weak photoluminescence, however, they have shown strong emission after short polyethylene glycol (PEG) chains have been linked onto HPAA macromolecule via Michael addition reaction. These PEGylated hyperbranched poly(amido amine)s show low cytotoxicity and potential application in cell imaging.  相似文献   

20.
We synthesized a novel benzimidazole-based fluorescent receptor bearing imine linkages with two sets of sp2 nitrogens, and investigated its binding properties toward various metal ions. The receptor exhibited a shift in emission band upon binding with Fe3+ ions, and no such significant response was noticed in other metal ions. The receptor shows a property of selective ratiometric fluorescent probe of Fe3+ ions without interferences of the background metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号