首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本工作以环硫丙基丁基醚的低聚物为流动载体,采用整体型液膜装置,研究了在HAuCl4-HCl1/1,2-二氯乙烷-载体/硫脲-HCI体系中的Au(Ⅲ)的迁移特性。Au(Ⅲ)藉载体的作用可原料相通过液膜全部迁移至接收相,其迁移经与载体浓度,原料液中Au(Ⅲ)的浓度和酸度以及接收液中的硫脲浓度和酸度等因素有关。以Na(I)-Cu(Ⅱ)-Au-(Ⅲ)-Fe(Ⅲ)-Pt(Ⅳ)混合液作原料液时,只有Au(Ⅱ)  相似文献   

2.
研究了以多孔聚偏氟乙烯为支撑体,N503为膜载体,煤油为膜溶剂的支撑液膜体系中Hg(Ⅱ)的迁移行为,测定了Hg(Ⅱ)与N503在煤油溶剂中的萃合物组成和条件萃取常数,考察了料液相pH值、载体浓度、料液相及反萃相中Cl-浓度等因素对Hg(Ⅱ)迁移的影响,获得Hg(Ⅱ)迁移的最佳条件:料液相pH=2.5~3.0,Cl-浓度为0.1 mol/L,载体浓度为0.706 mol/L,反萃相中Cl-浓度为0.8 mol/L.在最佳实验条件下,当Hg(Ⅱ)起始浓度为5.0×10-5 mol/L时,迁移120 min,Hg(Ⅱ)的迁移率可达99.6%.Hg(Ⅱ)在N503-煤油支撑液膜体系中的扩散层厚度δa为1.57×10-5 m,膜内扩散系数d0为7.26×10-13 m2/s,确立了Hg(Ⅱ) 的渗透系数P方程.  相似文献   

3.
PC-88A为流动载体的支撑液膜中Pt(Ⅳ)的迁移   总被引:1,自引:0,他引:1  
研究了以烷基膦酸PC-88A为流动载体的聚偏氟乙烯支撑液膜中Pt(Ⅳ)的传输行为.考察了料液相盐酸浓度、解析相盐酸浓度、载体浓度、SnCl2浓度对Pt(Ⅳ)迁移的影响,获得了Pt(Ⅳ)迁移的最佳实验条件:料液相盐酸浓度为1.0 mol/L、解析相盐酸浓度为6.0 mol/L、载体质量分数为5.0%、SnCl2浓度为0.05 mol/L.当料液相Pt(Ⅳ)初始质量浓度为1.0 mg/L时,在最佳实验条件下,Pt(Ⅳ)可在3 h内完全迁移.将本法用于含Pt(Ⅳ)(0.8 mg/L),Cu(Ⅱ)(75.0 mg/L),Zn(Ⅱ)(75.0 mg/L),Co(Ⅱ)(75.0 mg/L)和Ni(Ⅱ)(75.0 mg/L)的模拟试样中Pt(Ⅳ)的分离,取得了满意结果.  相似文献   

4.
程岩  于明  严曼明  江志裕 《电化学》2006,12(2):134-139
首次研究高价银氧化物Ag3O4(可看作为由Ag(Ⅲ)和Ag(Ⅱ)*组成)在碱性水溶液中的电化学性质和反应机理.循环伏安和XRD测试表明,Ag3O4在碱性溶液中的电化学还原过程比较复杂:在较慢的放电条件下,Ag3O4中的Ag(Ⅲ)按照Ag(Ⅲ)→Ag(Ⅱ)→Ag(Ⅰ)→Ag反应途径逐步还原为单质银;在较快的放电条件下,Ag(Ⅲ)可以直接被还原为Ag(Ⅰ),即Ag(Ⅲ)→Ag(Ⅰ)→Ag.而Ag(Ⅱ)*可直接还原成金属Ag.Ag3O4的理论放电容量可以达到553.1 mAh/g,比通常锌-氧化银电池所用AgO的电容量高出27.8%.在119C放电倍率下,Ag3O4的放电容量依然达到理论容量的83%.显示了作为新型化学电源材料的应用前景.  相似文献   

5.
三正辛胺-二甲苯液膜迁移Cd(Ⅱ)的研究   总被引:3,自引:0,他引:3  
研究了三正辛胺-二甲苯支撑液膜体系中搅拌速率、反萃剂、三正辛胺浓度、料液中H+浓度等因素对Cd(Ⅱ)离子迁移的影响.用大块液膜测定了不同温度时Cd(Ⅱ)离子跨膜迁移的萃取及反萃取的表观速率常数k1和k2.实验表明,温度升高,k1和k2均增大(k1>k2),且达到膜相最大镉离子浓度时所需的时间逐渐减少.膜相积累的镉离子浓度达最大时,Cd(Ⅱ)离子跨膜传输为稳态传输.根据Arrhenious关系得到膜相萃取反应和反萃取反应的活化能分别为23.8和19.3kJ/mol.  相似文献   

6.
乳状液膜分离技术具有快速高效、选择性强、富集比大等优点[1-4],但该技术目前大多还处在实验阶段,要实现工业化则必须解决液膜稳定性、有毒试剂的使用及二次污染等问题.表面活性剂对于乳状液膜的形成和稳定至关重要[5-7],而在液膜体系中采用复合表面活性剂,能改善液膜性能,提高膜稳定性及传质效率[8].本文研究了铜(Ⅱ)在span80-SDS-NH3液膜体系中的迁移行为.体系中无流动载体,利用内、外相中被分离物的浓度梯度促进物质迁移.当Cu2+进入内相时,与NH3产生络合反应,使内相中游离的铜离子浓度趋于零而促使其由外相进入内相,实现Cu2+与外相溶液的分离.  相似文献   

7.
利用Ag(Ⅰ)/Ag(Ⅱ)电偶在铂电极上的可逆反应,Ag(Ⅰ)被用作一些有机和无机化合物氧化的催化剂。关于Ag(Ⅰ)对Mn(Ⅱ)阳极氧化的催化作用已进行了较详细的研究。研究结果表明,在硫酸介质中铂电极上Ag(Ⅰ)氧化生成的Ag(Ⅱ)可以将Mn(Ⅱ)按下列反应分步进行:  相似文献   

8.
以纳米石墨片(GNS)为载体,FeCl_3·6H_2O为前驱体,乙二胺为改性剂和还原剂,乙二醇为表面活性剂和还原剂,无水乙酸钠为稳定剂,通过溶剂热法一步制备了胺基改性磁性GNS(NH_2-GNS/Fe_3O_4)纳米复合材料.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和振动样品磁强计(VSM)对样品进行了表征,并研究了其对水溶液中Ag(Ⅰ)的吸附性能.结果表明,NH_2-GNS/Fe_3O_4纳米复合材料的磁性能可以满足固液相分离的要求.NH_2-GNS/Fe_3O_4纳米复合材料对Ag(Ⅰ)具有吸附性能,且在对Ag(Ⅰ)的吸附过程中将Ag(Ⅰ)还原为单质银,该吸附过程为发生在均质表面的单层吸附.  相似文献   

9.
本文研究了反萃剂、料液 HCl浓度、温度、 N_(235)浓度对 N_(235)二甲苯醋酸铵大块液膜体系迁移 Cd~(2+)的影响。当膜相添加不同浓度的表面活性剂 Span 80时,测定了膜料液界面的萃取反应表观速率常数 k_1和膜反萃相界面的反萃取表观速率常数 k_2,并进行了相应的动力学分析。实验证明, Cd~(2+)的迁移可用两个连续单向不可逆的一级反应来描述。在本文的液膜体系中, Cd2+的跨膜迁移和 H+的同向迁移耦合。  相似文献   

10.
多孔聚丙烯支撑液膜中镉的传输研究   总被引:3,自引:0,他引:3  
研究了以多孔聚丙烯膜为支撑体, PC-88A/CHCl3为膜载体的金属离子 Cd(Ⅱ )支撑液膜传输行为; 考察了料液相 pH值、载体浓度、温度和起始浓度对 Cd(Ⅱ )传输的影响, 并对该体系富集、传输 Cd(Ⅱ )的最佳条件进行了讨论; 从界面化学和扩散传质角度提出了金属离子的传输动力学方程, 采用直线斜率法对 Cd(Ⅱ )在支撑液膜体系中的扩散层厚度(δ a=8.14× 10- 6 m)和膜内扩散系数( d0=5.43× 10- 10 m2/s)进行了测定, 取得满意结果.  相似文献   

11.
分散支撑液膜中金属镍(Ⅱ)的迁移研究   总被引:1,自引:0,他引:1  
研究了以聚偏氟乙烯膜(PVDF)为支撑体,煤油为膜溶剂,有机膦酸为流动载体的分散支撑液膜(DSLM)中金属Ni(Ⅱ)的传输行为;考察了载体种类、料液相pH、Ni(Ⅱ)起始浓度、分散相中H2SO4浓度以及膜溶液与H2SO4溶液体积比对Ni(Ⅱ)传输的影响,并对该体系富集、传输Ni(Ⅱ)的最佳条件进行了讨论;从界面化学和扩散传质角度提出了Ni(Ⅱ)在DSLM中传质动力学方程,采用直线斜率法对扩散层厚度以及金属离子在膜内的扩散系数进行了计算.  相似文献   

12.
在现有支撑液膜分离技术的理论研究基础上,探索合适的液膜分离体系,研究了Pb(Ⅱ)在PC-88A-煤油-HCl分散支撑液膜体系中的传输行为;考察了料液pH值、膜溶液与解析剂体积比、解析相中HCl浓度以及Pb(Ⅱ)的起始浓度对Pb(Ⅱ)传输的影响。 结果表明,以HCl为解析剂,料液相pH=5.25、膜溶液与解析剂体积比为160∶40、解析相中HCl浓度为5.00 mol/L时,该分散支撑液膜体系对金属Pb(Ⅱ)具有良好的传输作用。 在选取的最佳传输条件下,料液相中Pb(Ⅱ)的初始浓度为3.00×10-4 mol/L时,传输190 min,传输率可达88.9%,而传统支撑液膜只有72.3%。 分散支撑液膜不仅具有较高的传输效率,而且膜体系稳定,膜的使用寿命长。  相似文献   

13.
研究了以双硫腙为流动载体,煤油为膜溶剂的支撑液膜萃取体系,建立了支撑液膜在线萃取富集流动注射分光光度法测定水中痕量铅(Ⅱ)的新方法。优化了支撑液膜萃取富集条件,优化结果为:试样pH=6,反萃液柠檬酸浓度为0.5 mol/L,载体双硫腙浓度为0.03%,膜孔径为0.3μm,富集时间为30 m in。在此条件下,方法的检出限为0.2μg/L;线性范围为0.5~100μg/L。应用于自来水、河水和工业污水中铅(Ⅱ)的检测,结果满意。  相似文献   

14.
梁国明  任译 《化学学报》2005,63(23):2163-2168
采用超分子-连续介质(PCM)模型,在密度泛函B3LYP/6-311++G**水平上对水溶液中亚硝基甲烷异构化反应的机理进行了理论研究.结果表明,在水溶液中亚硝基甲烷可以通过两条反应途径(Ⅰ和Ⅱ)经质子迁移得到更稳定的重排产物--反式甲醛肟,但优势反应途径与在气相反应不同.在水溶液中亚硝基甲烷异构化反应最有可能的途径Ⅰ是通过氢迁移先生成顺式甲醛肟,然后绕N-O键旋转生成更稳定的反式甲醛肟.并且由于水分子的催化作用使得反应活化能从气相中240.6和196.2 kJ/mol分别降低至水溶液中的61.7和92.1 kJ/mol.  相似文献   

15.
自1968年黎念之研究液膜分离技术以来,该技术在湿法冶金、废水处理、苦咸水淡化、气体和化合物的分离、氨基酸及光学对映体的拆分等方面已展示了良好的前景。大块液膜分离技术用于筛选载体,考察各种因素对液膜传质速度的影响。其特点是简便、迅速,并可为乳状液膜及固载液膜的设计提供依据。液膜是将同它不相溶的另外两液相分隔开来的一种液相。在液膜体系中,阳离子与载体的配合物携带着它的反离子从源相经过膜相迁移到接收相,其迁移  相似文献   

16.
研究了以三正辛胺(TOA)为载体,由OP-10,异戊醇,环己烷和NaOH水溶液组成的微乳液分离铋(Ⅲ)的行为及机理。当膜相中三正辛胺浓度为0.030mol/L,内相中NaOH的浓度为0.030mol/L,外相中Ⅺ浓度为0.10mot/L,HCl的浓度为0.02~0.05mol/L时,可使铋(Ⅲ)的萃取率达98%以上。在该条件下,可使铋(Ⅲ)与Fe(Ⅲ)、Co(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)、Mn(Ⅱ)、Cr(Ⅲ)、Al(Ⅲ)完全分离。  相似文献   

17.
裴亮  王理明  郭维  赵楠 《化学学报》2011,69(13):1553-1558
研究了以聚偏氟乙烯膜为支撑体, 二-(2-乙基己基)磷酸(D2EHPA)为流动载体, 煤油和D2EHPA的混合溶液作为膜溶液, 膜溶液和解析剂HCl溶液组成更新相的更新型支撑液膜(RSLM)中Gd(III)的分离行为|考察了料液pH、更新相HCl浓度、膜溶液与HCl溶液体积比、不同载体浓度对Gd(III)分离的影响, 得出了Gd(III)最优分离条件为: 更新相HCl溶液浓度4.00 mol/L, 膜溶液与HCl溶液体积比4∶3, 载体浓度控制在0.160 mol/L, 料液相中pH为4.80. 在最优分离条件下, 当Gd(III)的初始浓度为1.00×10-4 mol/L时, 35 min Gd(III)分离率达到95.7%. 最后根据传质定律和界面化学理论提出了Gd(III)在RSLM中的传质动力学方程.  相似文献   

18.
以聚丙烯负载二氧化钛膜为载体,在一定浓度的AgNO3水溶液中,利用光还原在氧化钛膜表面还原Ag,制备载银二氧化钛负载膜,在室光和太阳光下,分别选择Ag/TiO2聚丙烯膜、TiO2聚丙烯膜和活性炭聚丙烯膜,研究膜的抗菌特性和光催化特性.结果表明:Ag/TiO2负载膜由于同时具有Ag和TiO2的双重效用,显示了良好的杀菌特性,无论是在室内还是太阳光下,都没有检测到活的微生物;在水溶液中检测Ag/TiO2负载膜和TiO2负载膜的光催化特性,发现由于银离子的催化活性中心的作用,光催化降解甲基橙的能力与TiO2负载膜相比,能够提高10%左右,显示了良好的光化学特性.  相似文献   

19.
用化学镀法制备 Pd/Ag 膜时膜厚和组成的控制   总被引:1,自引:0,他引:1  
曾高峰  史蕾  徐恒泳 《催化学报》2009,30(12):1227-1232
 研究了不同 Pd2+含量的镀液在多孔陶瓷载体上的化学沉积规律, 发现当 Pd 沉积层厚度达到约 5 μm 后, 即使镀液中反应物的消耗比例很小, 膜厚增长也明显变缓, 沉积反应主要受膜层表面的催化活性位控制; 当镀液中 Pd2+含量只能沉积形成小于 4 μm 的 Pd 膜时, 在 323 K 化学镀 180 min 后, 镀液中 Pd2+的转化率高于 90%. 与之相似, 当 Ag 镀液中的 Ag+含量等于 0.5~2 μm 的 Ag 膜层所需量时, 在 333 K 化学镀 120 min 后, Ag+的转化率可达 95%. Ag+的高转化率与 Ag 颗粒的择向生长特性有关. 根据 Pd 和 Ag 的化学镀沉积规律, 通过调节镀液中金属离子的含量能够预先设计和精确控制超薄 Pd/Ag 膜的膜厚和组成.  相似文献   

20.
离子液体内耦合液膜迁移苯酚的研究   总被引:1,自引:0,他引:1  
本文以N-甲基咪唑为原料,采用微波合成法,制备了疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6),并将其作为液膜,对苯酚的内耦合液膜迁移进行了研究,考察了温度、搅拌速度、料液相酸度、初始浓度及解析相NaOH浓度等因素对苯酚迁移的影响,得出了最佳迁移条件:温度300 K,搅拌速度350 r/min,料液相pH为3.65,解析相NaOH浓度为0.8 mol/L.在最佳液膜条件下,对于10 mg/L苯酚溶液,迁移110 min,迁移率可以达到97.3%,膜相中有少量苯酚滞留.离子液体可循环使用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号