首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cytochrome c (cyt c) is an electron-transfer heme protein that also binds nitric oxide (NO). In resting cyt c, two endogenous ligands of the heme iron are histidine-18 (His) and methionine-80 (Met) side chains, and NO binding requires the cleavage of one of the axial bonds. Previous femtosecond transient absorption studies suggested the photolysis of either Fe-His or Fe-Met bonds. We aimed at unequivocally identifying the internal side chain that is photodissociated in ferrous cyt c and at monitoring heme structural dynamics, by means of time-resolved resonance Raman (TR3) spectroscopy with approximately 0.6 ps time resolution. The Fe-His stretching mode at 216 cm-1 has been observed in photoproduct TR3 spectra for the first time for a c-type heme. The same transient mode was observed for a model ferrous cyt c N-fragment (residues 1-56) ligated with two His in the resting state. Our TR3 data reveal that upon ferrous cyt c photoexcitation, (i) distal Met side chain is instantly released, producing a five-coordinated domed heme structure, (ii) proximal His side chain, coupled to the heme, exhibits distortion due to strain exerted by the protein, and (iii) alteration in heme-cysteine coupling takes place along with the relaxation of the protein-induced deformations of the heme macrocycle.  相似文献   

2.
An idealized, water-soluble D(2)-symmetric diheme protein is constructed based on a mathematical parametrization of the backbone coordinates of the transmembrane diheme four-helix bundle in cytochrome bc(1). Each heme is coordinated by two His residues from diagonally apposed helices. In the model, the imidazole rings of the His ligands are held in a somewhat unusual perpendicular orientation as found in cytochrome bc(1), which is maintained by a second-shell hydrogen bond to a Thr side chain on a neighboring helix. The resulting peptide is unfolded in the apo state but assembles cooperatively upon binding to heme into a well-folded tetramer. Each tetramer binds two hemes with high affinity at low micromolar concentrations. The equilibrium reduction midpoint potential varies between -76 mV and -124 mV vs SHE in the reducing and oxidizing direction, respectively. The EPR spectrum of the ferric complex indicates the presence of a low-spin species, with a g(max) value of 3.35 comparable to those obtained for hemes b of cytochrome bc(1) (3.79 and 3.44). This provides strong support for the designed perpendicular orientation of the imidazole ligands. Moreover, NMR spectra show that the protein exists in solution in a unique conformation and is amenable to structural studies. This protein may provide a useful scaffold for determining how second-shell ligands affect the redox potential of the heme cofactor.  相似文献   

3.
The azide complexes of heme oxygenase from Pseudomonas aeruginosa (pa-HO) and Neisseriae meningitidis (nm-HO) have been studied with the aid of (1)H and (13)C NMR spectroscopy. These complexes have been shown to exist as an equilibrium mixture of two populations, one exhibiting an S = (1)/(2), (d(xy))(2)(d(xz), d(yz))(3) electron configuration and planar heme and a second with a novel S = (3)/(2), (d(xz), d(yz))(3)(d(xy))(1)(d(z)(2))(1) spin state and nonplanar heme. At physiologically relevant temperatures, the equilibrium shifts in the direction of the population exhibiting the latter electron configuration and nonplanar heme, whereas at temperatures approaching the freezing point of water, the equilibrium shifts in the direction of the population with the former electronic structure and planar heme. These findings indicate that the microenvironment of the distal pocket in heme oxygenase is unique among heme-containing proteins in that it lowers the sigma-donating (field strength) ability of the distal ligand and, therefore, promotes the attainment of heme electronic structures thus far only observed in heme oxygenase. When the field strength of the distal ligand is slightly lower than that of azide, such as OH(-) (J. Am. Chem. Soc. 2003, 125, 11842), the corresponding complex exists as a mixture of populations with nonplanar hemes and electronic structures that place significant spin density at the meso positions. The ease with which these unusual heme electronic structures are attained by heme oxygenase is likely related to activation of meso carbon reactivity which, in turn, facilitates hydroxylation of a meso carbon by the obligatory ferric hydroperoxide intermediate.  相似文献   

4.
Ligand migration and binding in heme proteins have been measured by X-ray diffraction and time-resolved spectroscopy of photoproduct intermediates. In myoglobin (Mb), internal cavities serve as docking sites for carbon monoxide (CO) ligands. In these sites, the CO ligands display characteristic infrared (IR) stretching bands due to interactions with the local electrical field. In the primary docking site, a CO can reside in two opposite orientations, characterized by a doublet of infrared bands, B1 at approximately 2130 and B2 at approximately 2120 cm-1. To assign these bands to the specific orientations, we have reexamined the effects of mutating His64 and Val68 on the infrared stretching bands associated with the B1 and B2 photoproduct states. Wild-type, H64L, V68F, and H64L-V68F MbCO were selected for experimental and theoretical analyses. Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations were used to interpret the effects of the electrostatic environment on the B state bands. The imidazole side chain of His64 appears to be the primary cause of the observed Stark splitting. The high-frequency B1 band is assigned to the CO orientation in which the carbon (white atom) is directed toward the heme iron and the Nepsilon-H proton of His64. At low temperatures, CO molecules in the opposite orientational conformer, B2 with the O atom (red) toward His64, first rotate by 180 degrees into the more stable B1 state and then rebind.  相似文献   

5.
Solution 1H NMR has been used to investigate the axial bonding of the proximal His and the hydrogen-bonding of the distal His to the bound ligand in the isolated chains as well as the subunits of intact, tetrameric, cyanomet human hemoglobin A. The complete proximal His, including all ring protons necessary to monitor bonding in each subunit, could be definitively assigned by 1D/2D methods despite the large size (approximately 65 kDa) and severe relaxation (to T(1) approximately 3 ms, line width approximately 1.5 kHz) of two of the protons. The complete distal His E7 ring was assigned in the alpha-chain and alpha-subunit of HbA, and the dipolar shifts and relaxation were analyzed to reveal a disposition intermediate between the positions adopted in HbCO and HbO2 that is optimal for forming a hydrogen bond with bound cyanide. The lability of the alpha-subunit His E7 NepsilonH is found to be similar to that in sperm whale cyanomet myoglobin. The orientation of the distal His E7 in the beta-subunit is found to be consistent with that seen in either HbCO or HbO2. While the His E7 labile NepsilonH proton signal could not be detected in either the beta-chain or subunit, it is concluded that this more likely reflects increased lability over that of the alpha-subunit, and not the absence of a hydrogen bond to the bound ligand. Analysis of the heme mean methyl hyperfine shift, which has been shown to be very sensitive to the presence of distal hydrogen bonds to bound cyanide (Nguyen, B. D.; Xia, Z.; Cutruzzolá, F.; Travaglini Allocatelli, C.; Brancaccio, A.; Brunori, M.; La Mar, G. N. J. Biol. Chem. 2000, 275, 742-751), directly supports the presence of a distal His E7 hydrogen bond to cyanide in the beta-chain and beta-subunit which is weaker than the same hydrogen bond in the alpha-subunit. The potential for the proximal His hyperfine shifts in serving as indicators of axial strain in the allosteric transition of HbA is discussed.  相似文献   

6.
The functional higher oxidation states of heme peroxidases have been proposed to be stabilized by the significant imidazolate character of the proximal His. This is induced by a "push-pull" combination effect produced by the proximal Asp that abstracts ("pulls") the axial His ring N(delta)H, along with the distal protonated His that contributes ("pushes") a strong hydrogen bond to the distal ligand. The molecular and electronic structure of the distal His mutant of cyanide-inhibited horseradish peroxidase, H42A-HRPCN, has been investigated by NMR. This complex is a valid model for the active site hydrogen-bonding network of HRP compound II. The (1)H and (15)N NMR spectral parameters characterize the relative roles of the distal His42 and proximal Asp247 in imparting imidazolate character to the axial His. 1D/2D spectra reveal a heme pocket molecular structure that is highly conserved in the mutant, except for residues in the immediate proximity of the mutation. This conserved structure, together with the observed dipolar shifts of numerous active site residue protons, allowed a quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor, both of which are only minimally perturbed relative to wild-type HRPCN. The quantitated dipolar shifts allowed the factoring of the hyperfine shifts to reveal that the significant changes in hyperfine shifts for the axial His and ligated (15)N-cyanide result primarily from changes in contact shifts that reflect an approximately one-third reduction in the axial His imidazolate character upon abolishing the distal hydrogen-bond to the ligated cyanide. Significant changes in side chain orientation were found for the distal Arg38, whose terminus reorients to partially fill the void left by the substituted His42 side chain. It is concluded that 1D/2D NMR can quantitate both molecular and electronic structural changes in cyanide-inhibited heme peroxidase and that, while both residues contribute, the proximal Asp247 is more important than the distal His42 in imparting imidazole character to the axial His 170.  相似文献   

7.
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.  相似文献   

8.
The 1H and 13C chemical shifts for the heme methyls of low-spin, ferric sperm whale cyanometmyoglobin reconstituted with a variety of centrosymmetric and pseudocentrosymmetric hemins have been recorded and analyzed to shed light on the nature of heme-protein contacts, other than that of the axial His, that modulate the rhombic perturbation to the heme's in-plane electronic asymmetry. The very similar 1H dipolar shifts for heme pocket residues in all complexes yield essentially the same magnetic axes as in wild type, and the resultant dipolar shifts allow the direct determination of the heme methyl proton and 13C contact shifts in all complexes. It is demonstrated that, even when the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a sufficiently large uncertainty in dipolar shift that the methyl proton contact shifts are inherently significantly less reliable indicators of the unpaired electron spin distribution than the methyl 13C contact shifts. The pattern of the noninversion symmetry in 13C contact shifts in the centro- or pseudocentrosymmetric hemes is shown to correlate with the positions of aromatic rings of Phe43(CD1) and His97(FG3) parallel to, and in contact with, the heme. These results indicate that such pi-pi interactions significantly perturb the in-plane asymmetry of the heme pi spin distribution and cannot be ignored in a quantitative interpretation of the heme methyl 13C contact shifts in terms of the axial His orientation in b-type hemoproteins.  相似文献   

9.
Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.  相似文献   

10.
We describe detailed studies of peptide-sandwiched mesohemes PSMA and PSMW, which comprise two histidine (His)-containing peptides covalently attached to the propionate groups of iron mesoporphyrin II. Some of the energy produced by ligation of the His side chains to Fe in the PSMs is invested in inducing helical conformations in the peptides. Replacing an alanine residue in each peptide of PSMA with tryptophan (Trp) to give PSMW generates additional energy via Trp side chain-porphyrin interactions, which enhances the peptide helicity and stability of the His-ligated state. The structural change strengthened His-FeIII ligation to a greater extent than His-FeII ligation, leading to a 56-mV negative shift in the midpoint reduction potential at pH 8 (Em,8 value). This is intriguing because converting PSMA to PSMW decreased heme solvent exposure, which would normally be expected to stabilize FeII relative to FeIII. This and other results presented herein suggest that differences in stability may be at least as important as differences in porphyrin solvent exposure in governing redox potentials of heme protein variants having identical heme ligation motifs. Support for this possibility is provided by the results of studies from our laboratories comparing the microsomal and mitochondrial isoforms of mammalian cytochrome b5. Our studies of the PSMs also revealed that reduction of FeIII to FeII reversed the relative affinities of the first and second His ligands for Fe (K2III > K1III; K2II < K1II). We propose that this is a consequence of conformational mobility of the peptide components, coupled with the much greater ease with which FeII can be pulled from the mean plane of a porphyrin. An interesting consequence of this phenomenon, which we refer to as "dynamic strain", is that an exogenous ligand can compete with one of the His ligands in an FeII-PSM, a reaction accompanied by peptide helix unwinding. In this regard, the PSMs are better models of neuroglobin, CooA, and other six-coordinate ligand-sensing heme proteins than of stably bis(His)-ligated electron-transfer heme proteins such as cytochrome b5. Exclusive binding of exogenous ligands by the FeII form of PSMA led to positive shifts in its Em,8 value, which increases with increasing ligand strength. The possible relevance of this observation to the function of six-coordinate ligand-sensing heme proteins is discussed.  相似文献   

11.
We have recently reported that aquo and thioether complexes of the ferric cytochrome c heme peptide N-acetylmicroperoxidase-8 (FeIII-1) exhibit greater low-spin character than do the corresponding complexes of a synthetic, water-soluble, monohistidine-ligated heme peptide (FeIII-2; Cowley, A. B.; Lukat-Rodgers, G. S.; Rodgers, K. R.; Benson, D. R. Biochemistry 2004, 43, 1656-1666). Herein we report results of studies showing that weak-field ligands bearing a full (fluoride, chloride, hydroxide) or partial (phenoxide, thiocyanate) negative charge on the coordinating atom trigger dissociation of the axial His ligand in FeIII-2 but not in FeIII-1. We attribute the greater sensitivity of His ligation in FeIII-1 to weak-field anionic ligands than to weak-field neutral ligands to the following phenomena: (1) anionic ligands pull FeIII further from the mean plane of a porphyrin than do neutral ligands, which will have the effect of straining the His-Fe bond in FeIII-2, and (2) heme in FeIII-2 is likely to undergo a modest doming distortion following anion binding that will render the His-ligated side of the porphyrin concave, thereby increasing porphyrin/ligand steric interactions. We propose that ruffling of the heme in FeIII-1 is an important factor contributing to its ability to resist His dissociation by weak-field anions. First, ruffling should allow His to more closely approach the porphyrin than is possible in FeIII-2, thereby reducing bond strain following anion binding. Second, the ruffling deformation in FeIII-1, which is enforced by the double covalent heme-peptide linkage, will almost certainly prevent significant porphyrin doming.  相似文献   

12.
The ferric spin state equilibrium of the heme iron was analyzed in wild-type cytochrome P450 BM3 and its F87G mutant by using temperature (T)-jump relaxation spectroscopy in combination with static equilibrium experiments. No relaxation process was measurable in the substrate-free enzyme indicating a relaxation process with a rate constant>10,000 s(-1). In contrast, a slow spin state transition process was observed in the N-palmitoylglycine (NPG)-bound enzyme species. This transition occurred with an observed rate constant (298 K) of approximately 800 s(-1) in the wild-type, and approximately 2500 s(-1) in the F87G mutant, suggesting a significant contribution of the phenylalanine side chain to a reaction step rate limiting the actual spin state transition. These findings are discussed in terms of an equilibrium between different binding modes of the substrate, including a position 7.5 A away from the heme iron ("distal") and the catalytically relevant "proximal" binding site, and are in accordance with results from X-ray crystallography, NMR studies, and molecular dynamics simulations.  相似文献   

13.
His64 and His93 are the two well-known sites of heme binding in water-dissolved holo-myoglobin, with His93 being a proximal, strongly binding partner, while the distal His64 weakly coordinates to the heme through a small-molecule ligand, e.g., water or O2. The heme bonding scheme in a water-free environment is as yet unclear. Here we employed electron transfer dissociation tandem mass spectrometry to study the preferential attachment site of the ferri-heme (Fe3+) in electrospray-produced 12+, 14+, and 16+ holo-myoglobin ions. Contrary to expectations, in lower-charge complexes that should have a structure resembling that in solution, the heme seems to be preferentially attached to the “distal” histidine. In contrast, in the highest studied charge state, the “proximal” histidine is the site of preferential attachment; the 14+ charge state is an intermediate case. This surprising finding raises a question of heme coordination in proteins transferred to water-free environment, as well as the effect of the protonation sites on heme bonding.  相似文献   

14.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

15.
Hemin (iron protoporphyrin IX) has been anchored to approximately 15 nm TiO2 nanocrystallites (anatase) in approximately 8 mum thick mesoporous thin films. Band gap excitation of these materials in methanol or aqueous (pH 4 or 8) solutions leads to the reduction of hemin to heme (FeIII --> FeII) and the production of TiO2(e-), heme/TiO2(e-). The mechanisms and second-order rate constants for the reduction of bromobenzene, chlorobenzene, dichlorobenzene, and trichloroethylene were quantified. In all cases, the concentration of TiO2(e-) was found to decrease to near zero before the hemes were oxidized to hemin. Comparative studies with TiO2(e-) that were not functionalized with hemes indicate that organohalide reduction is mediated by the hemes. Reactions of 6-bromo-1-hexene with heme/TiO2(e-) demonstrate multi-electron transfer reactivity and show that heme/TiO2(e-) nanocrystallites deliver two electrons to RX within 4.5 mus.  相似文献   

16.
Flash photolysis studies on the five-coordinate heme nitrosyl of Alcaligenes xylosoxidans cytochrome c' were carried out to investigate the ramifications of its proximal nitrosyl ligand on NO release. Delta absorbance spectra recorded 5 ms after photolysis indicate that approximately 5% of the photolyzed hemes are converted to a five-coordinate high spin ferrous state, revealing that reattachment of the endogenous His ligand is fast enough to trap some of the photolyzed heme. Analysis of NO rebinding suggests that the photolyzed ferrous protein is initially in a strained conformation, which relaxes on a millisecond time scale. The strained ferrous heme appears to contain a significantly labilized Fe-His bond, which allows direct second-order rebinding to the proximal face at high NO-concentrations. In contrast, the NO-binding properties of the relaxed conformation are similar to those previously observed in stopped-flow studies, which showed that a five-coordinate heme-nitrosyl is formed via a six-coordinate intermediate. The discovery of a rapid proximal His ligand reattachment to NO-dissociated heme reveals a novel "kinetic trap" mechanism for lowering the five-coordinate heme nitrosyl population in response to decreased ambient NO concentrations. Thus, NO dissociation from the five-coordinate heme nitrosyl, whether thermal or photochemical, is followed by rapid, and only slowly reversible, His reattachment which acts to kinetically trap the heme in its five-coordinate ferrous state. Because return to the five-coordinate heme nitrosyl requires two NO-dependent steps, the protein uses a kind of kinetic amplification of the thermodynamic dissociation that occurs in response to decreased NO concentrations. The implications of this "kinetic-trap" mechanism for NO release from soluble guanylate cyclase are discussed.  相似文献   

17.
We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  相似文献   

18.
Complexing an iron protoporphyrin IX into a genetically engineered heme pocket of recombinant human serum albumin (rHSA) generates an artificial hemoprotein, which can bind O2 in much the same way as hemoglobin (Hb). We previously demonstrated a pair of mutations that are required to enable the prosthetic heme group to bind O2 reversibly: (i) Ile-142-->His, which is axially coordinated to the central Fe2+ ion of the heme, and (ii) Tyr-161-->Phe or Leu, which makes the sixth coordinate position available for ligand interactions [I142H/Y161F (HF) or I142H/Y161L (HL)]. Here we describe additional new mutations designed to manipulate the architecture of the heme pocket in rHSA-heme complexes by specifically altering distal amino acids. We show that introduction of a third mutation on the distal side of the heme (at position Leu-185, Leu-182, or Arg-186) can modulate the O2 binding equilibrium. The coordination structures and ligand (O2 and CO) binding properties of nine rHSA(triple mutant)-heme complexes have been physicochemically and kinetically characterized. Several substitutions were severely detrimental to O2 binding: for example, Gln-185, His-185, and His-182 all generated a weak six-coordinate heme, while the rHSA(HF/R186H)-heme complex possessed a typical bis-histidyl hemochrome that was immediately autoxidized by O2. In marked contrast, HSA(HL/L185N)-heme showed very high O2 binding affinity (P1/2O2 1 Torr, 22 degrees C), which is 18-fold greater than that of the original double mutant rHSA(HL)-heme and very close to the affinities exhibited by myoglobin and the high-affinity form of Hb. Introduction of Asn at position 185 enhances O2 binding primarily by reducing the O2 dissociation rate constant. Replacement of polar Arg-186 with Leu or Phe increased the hydrophobicity of the distal environment, yielded a complex with reduced O2 binding affinity (P1/2O2 9-10 Torr, 22 degrees C), which nevertheless is almost the same as that of human red blood cells and therefore better tuned to a role in O2 transport.  相似文献   

19.
构建了鼠脑红蛋白(Mouse neuroglobin)的突变体F106L, 以探求近端残基对脑红蛋白血红素口袋结构的贡献. 通过溶液核磁共振方法研究了外来配体氰根离子与NgbF106L蛋白的结合作用, 结果显示, 此结合存在动力学过程, 并且NgbF106LCN 突变蛋白氰根络合物可以可逆地释放氰根离子, 并使原来的第6配体His64(E7)又结合回到血红素铁上. 研究结果揭示, G5(Phe106)残基对脑红蛋白血红素构象而言较为保守; QM/MM结构优化结果表明, 位于G5 和FG5的近端残基对蛋白结构稳定性具有重要作用, 并可调控外来配体与蛋白作用的配位平衡与热动力学性质.  相似文献   

20.
Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号