首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
高纯铝样品经盐酸(1+1)溶液微波消解,采用电感耦合等离子体质谱法测定所得样品溶液中钛、铁、铜、锌、镓、银、镉、铟和铅等杂质元素的含量。选择适当的待测元素的同位素克服了质谱干扰,定量加入50μg·L~(-1)铯和锗内标元素有效地校正了基体效应。选用碰撞室技术消除了多原子离子对部分被测元素的干扰。结果表明:方法的检出限(3s)在0.003~0.042μg·L~(-1)之间。高纯铝样品中9种元素测定结果的相对标准偏差(n=10)在2.9%~9.5%之间。方法用于精铝标准样品(R11C)的测定,结果与认定值基本相符。  相似文献   

2.
基于高流速辉光放电质谱法(GDMS)的质谱干扰消除技术,对镍基单晶高温合金中43种痕量元素的质谱干扰与同位素选择进行了研究,用于高性能镍基单晶高温合金的纯净化水平评价。固体样品采用直接进样,通过复杂基体质谱干扰计算判定、共存元素干扰消除等方式,确定了待测元素的同位素和分辨率模式,通过相应标准物质对待测元素的相对灵敏度因子进行校正,采用高流速GDMS测定镍基单晶高温合金中43种痕量元素。结果表明,痕量元素的检出限(3s)为1.04×10^(-7)%~6.60×10^(-3)%,大部分元素的检出限达到0.1μg·g^(-1)级别;对内控标准物质DD6-6#测定6次,测定值的相对标准偏差为0.59%~13%。方法分析结果与不同分析方法对照、标准物质比对,结果吻合度高。  相似文献   

3.
葡萄样品用微波消解处理后,采用电感耦合等离子体质谱法测定所得样品溶液中40种元素的含量。使用合适的同位素、内标和干扰校正方程消除了被测元素的干扰。方法的检出限(3s)在0.003 6~0.53μg·L-1之间。方法用于苹果标准物质(GBW 10019)的分析,测定值与认定值相符,相对标准偏差(n=6)在1.6%~8.5%之间。  相似文献   

4.
采用电感耦合等离子体质谱法测定镍基高温合金中锗、砷、钇、钌、铟、碲、铪、铂、金、汞等10种元素。样品以盐酸-硝酸混合酸溶解,并在完全溶解后滴加过氧化氢防止生成钨酸沉淀。在测定中采用基体匹配法和在线内标法校正基体效应和进样不均匀导致的信号扰动。待测元素的质谱干扰通过选择合适的同位素、加入元素修正方程和在测试中应用动能碰撞模式来进行消除。10种元素的检出限(3s)在0.002~0.65μg·g-1之间。应用此方法分析了3个标准样品(GBW01636,GBW 01638,GBW 01640),测定值与认定值相符,测定值的相对标准偏差(n=10)在0.60%~45%之间。  相似文献   

5.
在对各元素的分析谱线的选择及基体元素镍对相关元素测定的干扰作了系统研究的基础上,提出用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定镍基高温合金中铬、钛、铌、铝、铁及硼6种合金元素的方法。上述6种元素的检出限(3s/k)在0.006 9~0.13 mg.L-1范围内。取GH 33镍基高温标准样品按所提出方法分析,测定值与标准值相互一致,测得相对标准偏差值(n=10)均小于1.5%。在基体镍溶液中加入各被测元素的标准溶液做回收试验,上述6种元素的回收率在98.3%~101.0%之间。为对此方法的准确性作进一步考核,对GH 4145高温镍基合金样品进行分析,各元素的测定值与国家标准方法的测定值相符合。  相似文献   

6.
采用电感耦合等离子体原子发射光谱法测定大气颗粒物中12种重金属元素的含量。用石英滤膜收集大气颗粒物中的12种重金属元素,分别采用电热板和微波消解法处理样膜。电热板消解时,12种重金属元素的检出限在0.001~0.07 mg·L~(-1)之间,测定下限在0.004~0.28mg·L~(-1)之间,测定值的相对标准偏差(n=6)在0.78%~5.8%之间。微波消解时,12种重金属元素的检出限在0.001~0.05mg·L~(-1)之间,测定下限在0.004~0.20mg·L~(-1)之间,测定值的相对标准偏差(n=6)在0.46%~4.5%之间。应用该方法分析了标准样品,所得测定值与认定值相符。  相似文献   

7.
取饲料样品0.200 0~0.500 0g,加入硝酸5mL,按程序升温模式进行消解。所得消解液于100℃蒸缩至其体积约为1mL,用水将样品溶液定容至50.0mL。采用电感耦合等离子体质谱法测定溶液中9种主量有益元素(K、Na、Ca、P、Mg、Fe、Cu、Zn、Mn)和5种痕量有害元素(Cr、Pb、As、Cd、Hg)。在质谱测定中,为避免同量异位素的干扰,选择被测元素相对丰度较高的同位素作为测定元素,例如为了避免40 Ar的干扰,选择44 Ca作为待测元素;又如测54 Fe时受到54 Cr的干扰,为避免此干扰,选择56Fe作为待测元素;另一类质谱干扰为多原子离子(如ArCl及N和O生成的多原子离子)的干扰。但上述9种主量元素的浓度远高于干扰测定的多原子离子的浓度,因此,其干扰可以忽略。对5种痕量元素的测定而言,由于生成多原子离子所引起的干扰,可用数学干扰校正方程消除其影响。此外测定汞时,可加入金形成金汞齐,以消除汞的吸附效应。在测定中选择钪、镍等8种元素分别作为相关测定元素的内标元素,以校正信号漂移和基体效应。试验结果表明:14种元素的质量浓度在一定范围内与其信号强度呈线性关系,测定下限(10s/k)在1.65×10-4~6.60mg·kg~(-1)范围内。按标准加入法进行回收试验,测得其回收率在83.0%~115%之间,测定值的相对标准偏差(n=7)在0.4%~12%之间。  相似文献   

8.
铅锌矿区土壤样品经高压密闭消解罐消解处理,采用电感耦合等离子体质谱法测定其中铬、砷、镉、镍、铜、锰、锌、钴和铅等9种微量元素的含量。通过加入盐酸降低硫对铜测定的干扰,运用干扰方程校正光谱干扰,用内标校正消除基体影响。砷的检出限(3s)为1×10-4mg·g-1,其余8种元素的检出限(3s)均为1×10-5mg·g-1。9种元素的回收率在90.1%~109.1%之间。方法用于土壤标准物质(GBW 07401、GBW 07404、GBW 07406)分析,测试结果与标准值相吻合。  相似文献   

9.
电感耦合等离子体质谱法测定原油中微量元素   总被引:1,自引:0,他引:1  
原油样品用硝酸和过氧化氢经高压密闭消解罐消解处理,采用电感耦合等离子体质谱法测定其中镁、铝、钒、铬、镍、铜、锌、钼、镉和铅等10种微量元素的含量。10种元素的检出限(3s)在0.012~0.300μg·g~(-1)之间。方法用于S-21油标准样品分析,测定值与认定值相吻合,相对标准偏差(n=5)在0.5%~5.0%之间。10种元素的回收率在93.3%~116.0%之间。  相似文献   

10.
多晶硅样品经氢氟酸和硝酸混合酸消解,采用电感耦合等离子体质谱法测定所得样品溶液中23种杂质元素的含量。通过调整分辨率来调整多原子离子对部分被测元素的干扰。方法的检出限(3s)在0.3~19.7ng.g-1之间。方法用于太阳能级多晶硅样品中23种元素的测定,回收率在85.2%~111%之间,相对标准偏差(n=11)在0.9%~4.6%之间。  相似文献   

11.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg~(-1),检出限在0.03~0.09 mg·kg~(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

12.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg^(-1),检出限在0.03~0.09 mg·kg^(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

13.
建立了四酸消解-电感耦合等离子体质谱法测定土壤中铕(~(153)Eu)等24种稀有元素含量的分析方法。讨论了酸消解体系和消解过程对测定稀有元素存在的干扰,通过选择合适的待测同位素以及编辑干扰元素校正方程校正质谱干扰,采用嵌片技术和碰撞模式去除物理干扰和基体干扰;建立"主要干扰权重"概念,对内标元素进行分析筛选,最终确定~(185) Re、~(193)Ir作为内标元素。24种稀有元素标准曲线的线性相关系数均大于0.999,方法检出限为0.001~2.9mg·kg~(-1)。用3种土壤标准物质GSS-8、GSS-13、GSS-27进行精密度和准确度试验,相对标准偏差(n=6)为0.80%~19%,加标回收率为75.0%~128%,各元素的测定值均在认定值范围内。该方法适合在国家网土壤环境质量调查及其他相关工作和研究中推广和使用。  相似文献   

14.
样品经硝酸-盐酸-氢氟酸-过氧化氢(3+1+1+1)混合液微波消解后,加入硝酸(1+1)溶液溶解盐类,定容后供电感耦合等离子体质谱分析。以~(103)Rh和~(232)Th为内标,采用校正方程消除质谱干扰。Se的线性范围为0.500~500.0μg·L~(-1),其他7种元素的线性范围均为0.050~100.0μg·L~(-1),8种元素的检出限(3s)在0.01~0.8 mg·kg~(-1)之间。加标回收率在90.9%~113%之间,测定值的相对标准偏差(n=4)在0.90%~7.7%之间。方法用于测定镍精矿标准物质中Cd,测定值与认定值相符。  相似文献   

15.
采用电感耦合等离子体质谱法测定食用香精样品中砷、铬、铜、锰、硒、铅、汞、镉和钴等9种金属元素。通过完善微波消解前处理条件,优化仪器参数,结合使用八极杆碰撞/反应池技术和氦模式技术,有效地消除了多原子离子干扰。各测定元素的线性范围在10μg·L~(-1)以内,相关系数均在0.995以上,检出限(3s)在0.000 6~0.016μg·L~(-1)之间。加标回收率在90.0%~114%之间,测定值的相对标准偏差(n=6)小于5%。方法用于分析标准物质,测定值与认定值相符。  相似文献   

16.
流动注射化学发光法测定间苯二酚   总被引:2,自引:0,他引:2  
在碱性条件下,铁氰化钾氧化鲁米诺产生化学发光,间苯二酚对这一体系的化学发光具有很强的抑制作用.据此,结合流动注射技术,建立了一种测定间苯二酚的方法.线性范围为1.0×10-7~1.0×10-5mol·L-1;检出限(3σ)为2.0×10-8mol·L-1.该方法用于环境水样和皮炎宁酊中间苯二酚的测定,测定值的相对标准偏差(n=7)在1.9%~2.1%之间,其回收率在98.8%~103.0%之间.  相似文献   

17.
提出了高效液相色谱-串联质谱法测定西南金丝梅中26种农药残留量的方法。样品用乙腈振荡提取,提取液经氨基固相萃取小柱净化。用shim-packXR-ODS色谱柱分离,采用电喷雾离子化正离子方式及多反应监测模式进行测定。26种农药的质量浓度在0.01~2.5mg·L-1范围内与峰面积呈线性关系,检出限(3S/N)在4.16×10-5~2.85×10-4 mg·kg-1之间。在3个标准加入水平下进行了精密度和回收试验,方法的回收率在78.4%~112%之间,测定值的相对标准偏差(n=5)在1.2%~11%之间。  相似文献   

18.
采用高分辨电感耦合等离子体质谱仪(HR-ICP-MS)测定了电子级氢氟酸中砷、磷、硼、锌等4种关键杂质元素。测定砷时,遇到了多原子分子~(38)Ar~(37)Cl和~(40)Ar~(35)Cl的质谱干扰,选择在质谱分辨率12 000的模式测定砷,使上述干扰得以解决。测定磷时,采用分辨率为4 000的模式即可消除多原子分子~(15)N~(16)O和双电荷~(62)Ni~(2+)等质谱干扰。测定锌时,选择分辨率为5 500模式下测定时,即可消除双原子分子~(28)Si~(38)Ar的干扰。测定硼通常以~(11)B为被测元素,而且其干扰元素几乎不存在,采用分辨率500模式下进行测定即可,但却遇到所用纯水中含硼造成的干扰,采取了控制较低的背景等效浓度和在试验中用空白溶液将硼的背景值清洗至稳定后开始测定的措施使问题得以解决。样品分析时将氢氟酸样品用纯水稀释50倍后,按仪器工作条件进行测定。采用标准加入法制作工作曲线。上述4种元素的质量浓度在10~200ng·L~(-1)内与各自的信号强度呈线性关系,检出限小于5.00ng·L~(-1),BEC小于16.00ng·L~(-1)。加标回收率在90.5%~103%之间,测定值的相对标准偏差(n=11)均小于11%。  相似文献   

19.
牛血红蛋白(Hb)对过氧化氢氧化L-酪氨酸(L-Tyr)产生荧光的反应具有催化作用,而痕量汞(Ⅱ)对该体系荧光产生较强的猝灭作用,基于此建立了测定工业废水中痕量汞(Ⅱ)的酶催化-荧光猝灭法。试验考察了酸度、反应物浓度、反应时间、干扰离子等因素的影响。在pH 9.8的氨水-氯化铵缓冲溶液中,L-Tyr、过氧化氢和Hb的浓度分别为8.00×10-5,1.00×10-4,5.00×10-7 mol·L~(-1)时,汞(Ⅱ)质量浓度的线性范围为0.01~4.0 mg·L~(-1),方法的检出限(3s/k)为3.33μg·L~(-1)。方法用于工业废水中痕量汞(Ⅱ)的测定,结果与双硫腙分光光度法的测定值相符,加标回收率在97.3%~104%之间,测定值的相对标准偏差(n=6)小于3%。  相似文献   

20.
在微酸性的酸度条件下,在SLS介质中镓(Ⅲ)与槲皮素形成n[镓(Ⅲ)]n(槲皮素)=11的黄色荧光络合物,激发波长为435.4 nm,发射波长为485.6 nm,槲皮素的浓度在4.0×10-7~3.2×10-6mol·L-1范围内与荧光强度呈线性关系,检出限为1.79×10-10mol·L-1.用该方法分析了几种中药,测定结果的RSD(n=8)值在0.23%~0.64%之间,回收率在90.1%~101.3%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号