首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freezing points of aqueous lithium chloride and its mixtures with sodium chloride have been measured from 0.1 to 1.5m. From these measurements, calorimetric enthalpies of mixing, and osmotic coefficients of the pure salts at 298°K, osmotic and activity coefficients of the mixtures have been calculated up to 6.0m at 298°K. Excellent agreement with the literature values is found over the entire range of composition. This method of computation is considered to be superior to the analysis of only isopiestic results in the calculation of activity coefficients in mixed electrolytes.  相似文献   

2.
Fragments of the phase diagram of the H2O-2-C4H9OH-NaCl system were studied experimentally at 298 and 313 K. The thermodynamic properties of sodium chloride in three-component solutions with ionic strengths up to 1.9 mol/kg and alcohol content in the solvent 4.97 and 10 wt % were measured at 298 and 323 K by the electromotive force method with ion-selective electrodes. The eNRTL (electrolyte Non-Random Two-Liquids) model parameters correctly describing the results of electrochemical measurements of the partial properties of NaCl and phase equilibria in the water-2-butanol-sodium chloride ternary system and binary subsystems constituting it were determined. The isothermal sections of the phase diagram of the H2O-2-C4H9OH-NaCl system were calculated using the method of convex hulls implemented in the TernAPI package.  相似文献   

3.
The molar heats of dehydration, Δdehyd., of concentrated sodium chloride and potassium chloride solutions were measured with a differential scanning calorimeter in the scanning and isothermal modes. The overall Δdehyd. was found to be 44.5 and 44.3 kJ mole?1 H2O for NaCl and KCl solutions respectively. There is an astonishing difference between concentrated NaCl and KCl solutions in the way water is lost. The number of fractions of heat dehydration were 2 for NaCl and 3 for KCl. The excess Δdehyd. was about 10 kJ mole?1 H2O for fraction II of NaCl, and 17 and 55 kJ mole?1 H2O for fractions II and III, respectively, of KCl.  相似文献   

4.
MW fractions of poly(dimethyldiallylammonium chloride) (PDMDAAC) were prepared by preparative size-exclusion chromatography and characterized by static and dynamic light scattering, viscometry, size-exclusion chromatography, and electrophoretic light scattering, in 0.50M NaCl solution. The behavior of fractions with MW < 2 × 105 was as expected for a strong polyelectrolyte in a good solvent, with a Mark-Houwink exponent of ca. 0.8, and MW-dependencies of the hydrodynamic radius and the radius of gyration of corresponding magnitude. At higher MW, curvature appears in the MW-dependencies, which can be best explained by the presence of branching. While this notably lowers the intrinsic viscosity at high MW, the electrophoretic mobility is unchanged regardless of molar mass. Thus, the branched polymers display the electrophoretic free-draining behavior characteristic of linear polyelectrolytes. ©1995 John Wiley & Sons, Inc.  相似文献   

5.
Electro-osmotic pumping (EOP) theory and its characteristics (transport numbers, brine concentration, current density, current efficiency, electro-osmotic coefficients, etc.) of Selemion AMV and CMV ion-exchange membranes were studied. The brine concentration increased with increase in current density and feed water concentration. Current efficiency was nearly constant in a wide range of current densities and feed water concentrations. The water flow through the membranes also increased with increasing current density and feed water concentration. The increase in water flow increased the current efficiency significantly. Consequently, water flow through electrodialysis (ED) membranes had a positive effect on ED. Electro-osmotic coefficients decreased with increasing feed water concentration. Osmotic flow in EOP-ED decreased relative to the total flow with increasing current density while the electro-osmotic flow increased relative to the osmotic flow. Osmotic flow significantly contributes to the total water flow in EOP. Selemion AMV and CMV membranes performed well for salt concentration. A simple membrane potential measurement has been demonstrated to function reasonably satisfactorily to predict membrane performance for salt concentration.  相似文献   

6.
Gamma-radiolysis of aqueous sodium nitrate and nitrate-1-propanol solutions has been studied as a function of concentration of reactants and absorbed dose. The three major products analyzed are nitrite, hydrogen peroxide and propionaldehyde in aerated and deoxygenated solutions. The concentration of the products formed were found to be proportional to the absorbed dose. The G-values of the different products obtained over a wide range of reactant concentrations are explained on the basis of an appropriate reaction mechanism.  相似文献   

7.
Molecular dynamics simulations are presented for the self-diffusion coefficient of water in aqueous sodium chloride solutions. At temperatures above the freezing point of pure water, the self-diffusion coefficient is a monotonically decreasing function of salt concentration. Below the freezing point of pure water, however, the self-diffusion coefficient is a non-monotonic function of salt concentration, showing a maximum at approximately one molal salt. This suggests that sodium chloride, which is considered a structure-making salt at room temperature, becomes a structure-breaking salt at low temperatures. A qualitative understanding of this effect can be obtained by considering the effect of ions on the residence time of water molecules near other water molecules. A consideration of the freezing point depression of aqueous sodium chloride solutions suggests that the self-diffusion coefficient of water in supercooled sodium chloride solutions is always higher than that in pure (supercooled) water at the same temperature.  相似文献   

8.
A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not more than 1%. The titration and calculation takes less than 20 min.  相似文献   

9.
The values estimated from various mixing rules for the ultrasonic velocity, viscosity and refractive index have been compared with the respective values measured earlier at 293, 303, and 313?K over the entire mole fraction range of two binary mixtures of tetrahydrofuran (THF) with 1-propanol (1-p) and 2-propanol (2-p). There is an excellent agreement between the experimental values of ultrasonic velocity and of refractive index with the respective values obtained from the mixing rules. The mixing rules for viscosity provide values agreeing broadly with those obtained from experimental measurements. The relative merits and interrelations of these mixing rules are discussed.  相似文献   

10.
The applicability of ultrasound over a frequency range from 18 kHz to 2 MHz to the degradation of metal complexes with organic compounds present in water, brines, and sodium chloride solutions was studied. It was found that ultrasound over a frequency range from 18 to 100 or 200 kHz can be used for the degradation of complexes in sodium chloride solutions and brines or seawater, respectively. In this case, the best results were obtained over the frequency range 80–100 or 80–200 kHz, respectively.  相似文献   

11.
Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.  相似文献   

12.
Monte Carlo simulations are used, together with models of the intramolecular and intermolecular potential surfaces, to model liquid water and several phases of ice. Intramolecular relaxation makes important contributions to both thermodynamic and structural properties. A quantum local mode analysis of the Monte Carlo configurations is used to predict the density of states and infrared absorption intensities for the intramolecular bending and stretching vibrations. The large shifts from the gas phase OH stretch frequencies observed experimentally in the liquid and solid phases are due to anharmonic terms in the intramolecular surface rather than to harmonic intermolecular coupling. A significant contribution to observed changes in IR intensity on condensation arises from the large molecular polarisability.  相似文献   

13.
Partial volumes $\bar V^0$ of amino acids in aqueous NH4Cl and NaCl solutions are discussed. The salts have different effects on water structure. The contributions of the charged NH 3 + and COO? groups of amino acids are found. Structural characteristics of hydrated complexes are calculated: partial volumes of water inside and outside the hydration sphere and hydration numbers. The same value of $\bar V^0$ (NH 3 + , COO?) is achieved at a higher NH4Cl concentration. The two salt systems with the same $\bar V^0$ (NH 3 + , COO?) have similar values of the partial volumes of water and hydration numbers.  相似文献   

14.
Summary Aqueous solutions of sodium dodecyl sulfate with added sodium chloride (0–0.3 mol kg–1) were studied at 298.2 K in order to calculate the molar standard free energy of micelle formationG m . The following properties were measured: (i) aggregation number by membrane osmometry, (ii) counter-ion binding and sodium ion activities by electromotive force, (iii) critical micelle concentration by electromotive force and fluorescence spectrophotometry. The results indicate thatG m . is independent of the NaCl concentration.  相似文献   

15.
The salicylate ion increases the rate of bile flow (choleretic effect) and bile salts are known to affect the colonic absorption of oxalate. Owing to this physiological relevance of salicylate and oxalate ions, critical micelle concentration (cmc) values of sodium deoxycholate (NaDC) were determined in aqueous sodium oxalate, sodium salicylate, and sodium chloride solutions by using surface tension, fluorescence, and EMF methods. The results indicate, besides a counterion effect, the influence of coanions on the cmc. In the range from 25 to 40 °C, cmc increases almost linearly with temperature. In the temperature range from 30 to 40 °C, the counterion binding constant β of NaDC micelles has the same value (0.17±0.01) in the presence of sodium chloride and sodium salicylate. On the other hand, in sodium oxalate solution β=0.05±0.02 when oxalate concentration is less than or equal to c* and β=0.48±0.04 above c*, where c*≈0.038 mol kg(-1). EMF measurements also supported this type of counterion binding to NaDC micelles in sodium oxalate solutions. In sodium oxalate solution, at c* a change in the shape of deoxycholate micelles is expected to take place. Salicylate, oxalate, and chloride coanions have a similar effect on the adsorption of NaDC. This study reveals that the choleretic effect of salicylate is not due to the influence of salicylate ions on the micellization of NaDC.  相似文献   

16.
The activity of Fe3O4 in a spinel solution was calculated by direct processing of the experimental data on equilibrium between this solution and conjugated phases in the Fe-Cu-O system. The concentration dependence of the activity of Fe3O4 is discussed in terms of the theory of subregular ionic solutions.  相似文献   

17.
The molecular dynamic method with design is used to calculate the thermodynamic properties of isolated water clusters containing Na+ or Cl-. The number of water molecules in the clusters is from 2 to 14. The size dependence of the microscopic analogs of pressure, isothermal compressibility, and surface tension of the clusters is determined. The effect of positive and negative ions on heteromolecular nucleation in vapor is discussed. Translated fromZhurnal Strukturnoi Khimii, Vol. 38, No. 6, pp. 1092–1102, November–December, 1997.  相似文献   

18.
19.
Measurements have been made to determine the solubility of ethane, C2H6, in aqueous solutions of four different surfactants of the linear alkanesulfonate class at 25 degrees C. The surfactants, sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, and sodium 1-octanesulfonate, all share a common head group (-SO-3) and counter ion (Na+), and differ only in the length of the alkyl chain attached to the head group. The solubility of ethane has been determined as a function of surfactant concentration for each surfactant. At surfactant concentrations below the critical micelle concentration (CMC), the solubility of ethane is quite low and differs only slightly from the solubility of ethane in pure water. At concentrations greater than the CMC, the solubility of ethane exhibits a gradual increase with surfactant concentration. At high surfactant concentrations, well in excess of the CMC, the solubility of ethane is found to increase as a linear function of surfactant concentration. From this data it becomes possible to determine the fractional population of the surfactant in the free and micellized states. The solubility data measured for ethane is interpreted in terms of the mass-action model for micelle formation.  相似文献   

20.
Thermogalvanic cells with silver chloride and quinhydrone electrodes in the HCl-H2O-1-PrOH system are studied experimentally. The results are used to determine standard entropies of thermal diffusion transport of hydrogen chloride, entropies of mobile H+ and Cl? ions, and Soret coefficients of the electrolyte at 298 K. Thermal diffusion entropies and partial molar entropies of said ions in water-1-propanol solutions are calculated within the Agar model. The results are interpreted with the application of basic concepts of the De Bethune theory concerning thermal diffusion transport in electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号