首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new human ferritin immunosensor was developed using anti-human ferritin antibodies (Abs) immobilized on the gold disc of a quartz crystal microbalance (QCM). Two kinds of self-assembled monolayers (SAMs) prepared by cystamine-glutaraldehyde and cystamine method were applied to immobilize anti-ferritin monoclonal antibodies (MoAbs) and polyclonal antibodies (PoAbs) on the quartz, respectively. The reusabilities of quartz crystal adopting the SAMs were found to be better than those of the other immobilization methods used. The 10 cycles of measurements could be performed on the gold surface of the same crystal regenerated with a solution of glycine·HC1. This sensor system could be continuously performed for 15 days, the relative frequency shifts (the frequency shifts measured are relative to the response at the first day) were all found to be above 95%. A linear relationship existed between the frequency shifts (Hz) and the log values of human ferritin concentrations in the range from 0.1 to 100 ng/ml in buffer and mouse serum. This human ferritin immunosensor had some advantages: high sensitivity, high specificity, low sample requirement, high reusability, no label and no pretreatment etc.  相似文献   

2.
A novel electrochemical immunosensor for the determination of carcinoma antigen 125 (CA125) was developed by means of immobilizing CA125 antibody (anti-CA125) on gold nanoparticles (Au) and thionine (Thi)-modified carbon paste interface. To avoid the leak of hydrophilic gold nanoparticles and thionine from carbon paste interface, the Au-Thi-modified carbon paste electrodes (CPEs) were first treated in the mixture solution containing 10% HNO3 and 2.5% K2Cr2O7 for 1.5 min at +1.5 V to make the carbon surface with -COOH groups, which can react with -NH2 groups on the thionine molecule, in the meantime, gold nanoparticles were absorbed on the thionine surface. Subsequently, CA125 antibodies were assembled onto the surface of gold nanoparticles. The fabrication process of the immunosensor was characterized by fourier transform infrared spectroscopy (FTIR) and UV-vis absorption spectroscopy. The performance and factors influencing the performance of the immunosensor were studied in detail. A direct electrochemical immunoassay format was employed to detect CA125 antigen based on the current change before and after the antigen-antibody reaction. The current change was proportional to CA125 concentration ranging from 10 to 30 U/ml with a detection limit of 1.8 U/ml (at 3δ). The immunosensors were used to analyze CA125 in human serum specimens. Analytical results of clinical samples show that the developed immunoassay has a promising alternative approach for detecting CA125 in the clinical diagnosis.  相似文献   

3.
Fabrication of a novel capacitive immunosensor based on grafted ethylene diamine and self-assembled gold nanoparticle monolayer on glassy carbon electrode for the detection of Salmonella spp. is described for the first time. In the present study, the Salmonella spp. monoclonal antibodies (denoted as McAbs) was immobilized on gold nanoparticles. Interaction of McAbs and Salmonella spp. was detected directly using the electrochemical impedance spectroscopy (EIS) technique. The experimental results showed that the concentration of antigen was measured through the relative change in capacitance in the corresponding specific binding of Salmonella spp. and McAbs. Under the optimized conditions, the relative changes in capacitance were proportional to the logarithmic values of Salmonella spp. concentrations in the range of 1.0 × 102 to 1.0 × 105 CFU mL−1 (r = 0.991) with the detection limit of 1.0 × 102 CFU mL−1. The stability of proposed immunosensor could be estimated by determining the relative change in capacitance, which remained almost the same in two months and decreased gradually to 85.3% of initial value after four months’ storage. The used immunosensor could be regenerated repeatedly by immersing in glycine-HCl buffer solution (pH 2.8). Finally, the proposed immunosensor was successfully used for the detection of Salmonella spp. in lab-processed commercial pork samples.  相似文献   

4.
A label-free capacitive immunosensor based on quartz crystal Au electrode was developed for rapid and sensitive detection of Escherichia coli O157:H7. The immunosensor was fabricated by immobilizing affinity-purified anti-E. coli O157:H7 antibodies onto self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) on the surface of a quartz crystal Au electrode. Bacteria suspended in solution became attached to the immobilized antibodies when the immunosensor was tested in liquid samples. The change in capacitance caused by the bacteria was directly measured by an electrochemical detector. An equivalent circuit was introduced to simulate the capacitive immunosensor. The immunosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The experimental results indicated that the capacitance change was linearly correlated with the cell concentration of E. coli O157:H7. The immunosensor was able to discriminate between cellular concentrations of 102–105 cfu mL−1 and has applications in detecting pathogens in food samples. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were also employed to characterize the stepwise assembly of the immunosensor.  相似文献   

5.
C. March  Y. Jiménez  A. Montoya 《Talanta》2009,78(3):827-1971
A quartz crystal microbalance (QCM) immunosensor was developed for the determination of the insecticide carbaryl and 3,5,6-trichloro-2-pyridinol (TCP), the main metabolite of the insecticide chlorpyrifos and of the herbicide triclopyr. The detection was based on a competitive conjugate-immobilized immunoassay format using monoclonal antibodies (MAbs). Hapten conjugates were covalently immobilized, via thioctic acid self-assembled monolayer (SAM), onto the gold electrode sensitive surface of the quartz crystal. This covalent immobilization allowed the reusability of the modified electrode surface for at least one hundred and fifty assays without significant loss of sensitivity. The piezoimmunosensor showed detection limits (analyte concentrations producing 10% inhibition of the maximum signal) of 11 and 7 μg l−1 for carbaryl and TCP, respectively. The sensitivity attained (I50 value) was around 30 μg l−1 for both compounds. Linear working ranges were 15-53 μg l−1 for carbaryl and 13-83 μg l−1 for TCP. Each complete assay cycle took 20 min. The good sensitivity, specificity, and reusability achieved, together with the short response time, allowed the application of this immunosensor to the determination of carbaryl and TCP in fruits and vegetables at European regulatory levels, with high precision and accuracy.  相似文献   

6.
应用自组装膜技术在压电石英晶振金电极表面自组装一带羧基的巯基丙酸单层膜,通过盐酸1-乙基-3-(3-二甲基氨基丙基)碳二亚胺及N-羟基琥珀酰亚胺共价固定32KD的日本血吸虫分子抗原(SjAg32),设计了石英晶振微天平免疫传感器,用于测定日本血吸虫抗体.比较了巯基自组装单层膜与HEMA-MMA共聚物涂层修饰的石英晶振在溶液中的振荡行为,发现巯基自组装单层膜修饰的石英晶振稳定快,且稳定性好.在优化条件下,测得IRS(49-2000)的滴度为1:1500.此外,对不同程度血吸虫感染的兔血清进行了测试,结果表明,该传感器能较好地定量区别血吸虫感染程度.  相似文献   

7.
A novel electrochemiluminescence (ECL) sandwich-type immunosensor for human immunoglobulin G (hIgG) on a gold nanoparticle modified electrode was developed by using N-(aminobutyl)-N-ethylisoluminol (ABEI) labeling. The primary antibody, goat-anti-human IgG was first immobilized on a gold nanoparticle modified electrode, then the antigen (human IgG) and the ABEI-labeled second antibody was conjugated successively to form a sandwich-type immunocomplex. ECL was carried out with a double-step potential in carbonate buffer solution (CBS) containing 1.5 mM H2O2. The ECL intensity increased linearly with the concentration of hIgG over the range 5.0-100 ng/mL. The limit of detection was 1.68 ng/mL (S/N = 3). The relative standard deviation was 3.79% at 60 ng/mL (n = 9). The present immunosensor is simple and sensitive. It has been successfully applied to the detection of hIgG in human serums.  相似文献   

8.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

9.
Shirong Yuan  Yaqin Chai  Li Mao  Xia Yang  Yali Yuan  Huan Niu 《Talanta》2010,82(4):1468-11953
A simple and sensitive sandwich-type electrochemiluminescence immunosensor for α-1-fetoprotein (AFP) on a gold nanoparticles (nano-Au) modified glassy carbon electrode (GCE) was developed by using Ru-silica (Ru(bpy)32+-doped silica) doped Au (Ru-silica@Au) composite as labels. The primary antibody, anti-AFP was first immobilized on the gold nanoparticles modified electrode due to the covalent conjugation, then the antigen and the Ru-silica@Au composite nanoparticles labeled secondary antibody was conjugated successively to form a sandwich-type immunocomplex through the specific interaction. The surfaces of Ru-silica nanoparticles were modified via the assemble of Au nanoparticles. The prepared Ru-silica@Au composite nanoparticles own the large surface area, good biocompatibility and highly effective electrochemiluminescence properties. The morphologies of the Ru-silica@Au composite nanoparticles were investigated by using transmission electronic microscope (TEM). The Ru-silica@Au composite nanoparticles labeled anti-AFP/AFP/bovine serum albumin (BSA)/anti-AFP/nano-Au modified GCE electrode was evaluated by means of cyclic voltammetry (CV) and electrogenerated chemiluminescence (ECL). The immunosensor performed high sensitivity and wide liner for detection AFP in the range of 0.05-50 ng/mL and the limit detection was 0.03 ng/mL (defined as S/N = 3).  相似文献   

10.
This paper describes the elaboration of a model immunosensor monitored by polarization modulation reflection absorption infrared spectroscopy (PM-RAIRS) and quartz crystal microbalance (QCM-D), as well as its reactivity using PM-RAIRS as transduction technique. To prove its relevance, this immunosensor was applied to the detection of benzo[a]pyrene (BaP), a carcinogenic polycylic aromatic hydrocarbon. Very few immunoassays, and even fewer immunosensors, have been described for the assay of BaP, making it an interesting target for analytical device development. The PM-RAIRS immunosensor was constructed on planar gold-coated sensors functionalized with cystamine then glutaraldehyde. Antibodies were immobilized through their affinity to protein G, covalently coupled to the aldehyde layer. In a first stage, a model mouse IgG was utilized to optimize the elaboration parameters; then, a monoclonal anti-PAH antibody was used and detection tests were performed, monitored by PM-RAIRS. The successive functionalization steps were monitored by PM-RAIRS and QCM-D. The binding of the proteins to gold surface, their saturation coverages and association constants, as well as their capture efficiencies were discussed. BaP capture by the antibody layer was evidenced by the appearance of a new ν(C-H) band at 3039 cm−1 typical of aromatic C-H bonds. The integrated area of this band varied linearly with the BAP concentration within the range of tested concentrations, with a limit of detection close to 3 μM. This represents the first example of direct, label-free immunodetection of a low molecular weight molecule by PM-RAIRS transduction. The simplicity and the rapid response of this IR sensor make it already very worthwhile to preliminary on-site measurements.  相似文献   

11.
Yi Wan  Dun Zhang  Baorong Hou 《Talanta》2009,80(1):218-401
An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptoundecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)63−/4−were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (Rct) increased with increasing SRB concentration. A linear relationship between Rct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 × 107 cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost, and time-saving monitoring of microbial populations.  相似文献   

12.
《Analytical letters》2012,45(10):1979-1991
Abstract

A piezoelectric immunosensor based on a competitive format was developed for determination of ochratoxin A (OTA) concentration. Surface modifications via two self‐assembled monolayers (SAMs) were investigated respectively and a better result was obtained with the SAM of 16‐mercaptohexadecanoic acid (16‐MHDA). The quartz crystal microbalance (QCM)‐based immunosensor was fabricated by immobilizing anti‐OTA antibodies onto the surface of the 16‐MHDA‐modified electrode, and allowing competition between free OTA and that conjugated with BSA to occur. The assay exhibited a working range of 50–1000 ng/mL and a detection limit of 16.1 ng/mL. Studies of interference and matrix effects were performed to evaluate the feasibility of the developed immunosensor for the direct analysis of OTA in real samples. Recoveries were conducted at 50, 200, and 1000 ng/g and were determined to be in the range of 142%–76%. The OTA assay is specific. No cross‐reactivates were observed with citrinin.  相似文献   

13.
A capacitive sensing method based on self-assembling gold nanoparticles to the surface of the sol-gel modified electrode has been developed for the direct detection of the human IgG in human serum. The capacitance of the immunosensor corresponding to the concentration of human IgG is investigated by alternating current impedance. The formed mercaptopropyltriethoxysilane (MPTS) film is ultrathin; the immobilization density of antibodies is high because of high surface-volume area of the assembled gold nanoparticles and the biological macromolecules when immobilized on gold nanoparticles can retain their bioactivity. This capacitive immunosensor prepared with present method can provide high sensitivity. The linear calibration curve was obtained in the range 8.3-2128 ng/ml, with a detection limit of 3.3 ng/ml when plotted versus the logarithm of the antigen concentration. After each immunoassay, the regeneration of the electrode could be performed through washing in basic solution without obvious decrease in response. No cross-reactivity was observed with other protein species. The dependence of sol-gel modified electrode stability on the pH value and ion strength was studied. The insulating properties of the different layers of the immunosensor were also investigated.  相似文献   

14.
The direct electrochemistry of cytochrome c (cyt c) on a gold electrode modified with 3-mercaptopropylphosphonic acid [HS-(CH2)3-PO3H2, MPPA] self-assembled monolayers (SAMs) was for the first time investigated. Electrochemical measurements and surface-enhanced infrared absorption spectroscopic reveal that the adsorption kinetics of cyt c on the MPPA-SAMs is very fast (saturation adsorption is completed within 5 s) and the immobilized cyt c molecules retain their native secondary protein structure. The nature of interaction between cyt c and -PO3H2 groups is mainly the electrostatic interaction. The direct electrochemistry of the immobilized cyt c on the -PO3H2 terminated SAMs with short chain is nearly reversible. Its formal potential (E0′ = 18 ± 3 mV vs. SCE) is very close to that of cyt c in an aqueous solution (E0′ = 18-22 mV vs. SCE). In addition, the electron transfer rate of cyt c immobilized on -PO3H2 terminated SAMs is relatively slow as compared to -SO3H and -COOH terminated SAMs, indicating excess negative charge density on the SAMs surface will decrease the electron transfer rate of cyt c.  相似文献   

15.
A sensitive and label-free electrochemical impedance immunosensor via covalent coupling the antibody with functionalized gold nanoparticles (FAuNP) for probing apolipoprotein A-I was presented. The hybrid gold nanoparticles were prepared with a two-in-one strategy, i.e. via the stepwise employment of self-assembled monolayer (SAM) and sol-gel techniques, to improve the performance of such a label-free immunosensor, which was investigated by electrochemical impedance spectroscopy. It was found that this novel FAuNP immunosensor showed higher protein-loading capacity and better response properties (6-17 times) than that fabricated by normal SAM technique did. The remarkably improved properties of the immunosensor were ascribed to FAuNP with the larger surface-to-volume ratio, more free amino linkage groups, and the lower nonspecific protein adsorption. As a result, the thus-prepared antibody-modified immunosensor showed reproducible (R.S.D. = ±3.2%, n = 10) linear response to apolipoprotein A-I (Apo A-I) antigens in the range of 0.1-10 ng mL−1. The detection limit of this immunosensor was 50 pg mL−1 (corresponding to 1.8 pmol L−1), which was two orders of magnitude lower than that of the traditional methods. These results exhibited the novel immunosensor had a high sensitivity, stability and selectivity for the determination of Apo A-I, especially in clinic microanalysis.  相似文献   

16.
A highly sensitive immunosensor using optical waveguide lightmode spectroscopy (OWLS) was developed for the detection of the herbicide trifluralin. OWLS as an in situ and label free method of detection, based on the measurement of the diffraction of a linearly polarized laser beam (He-Ne laser, 632.8 nm) on a diffraction grating in a thin waveguide layer (SiO2-TiO2), offered means to produce immunosensors utilizing immobilized antibodies raised against trifluralin allowing a non-competitive biosensor, or immobilized trifluralin conjugate allowing a competitive biosensor for this analyte. Immobilization of molecules sensitizing the sensor was undertaken on amino silanized waveguide surfaces in a two-step procedure using glutaraldehyde. Within the immobilized antibody (Ab) based immunosensor the signal measured was proportional to the trifluralin content in the samples, but the method allowed detection of trifluralin only above 100 ng ml−1 due to the small molecular size of the antigen (Ag). In the immobilized antigen based immunosensor, a trifluralin-bovine serum albumin (BSA) conjugate was covalently linked to the waveguide surface. During measurements the standard solutions and samples were mixed in 1:1 ratio with antiserum, containing constant amounts of antibodies. The amount of free antibodies bound to the surface was inversely proportional to the trifluralin content of the solutions measured. The immobilized antigen based method allowed detection of trifluralin in the concentration range of 2×10−7 to 3×10−5 ng ml−1. Results of trifluralin determinations were compared to those obtained in parallel enzyme-linked immunosorbent assay (ELISA) tests and in gas chromatorgraphic-mass spectrometric (GC-MS) analyses, and indicated an increase of six orders of magnitude in the limit of detection (LOD).  相似文献   

17.
A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method.
Figure
Based on CMOS and MEMS techniques, a micro FET-based immunosensor was developed for the hemoglobin-A1c level determination. The antibodies were immobilized based on the mixed self-assembled monolayers and seed-mediated growth method. The immunosensor can detect HbA1c and hemoglobin simultaneously and has good potential for clinical application.  相似文献   

18.
We have developed a new immunosensor based on self-assembly chemistry for highly sensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) using surface plasmon resonance (SPR). A monolayer of amine terminated poly(ethylene glycol) hydrazinehydrochloride (PEG-NH2) thiolate was constructed on an activated gold surface and immobilized with trinitrophenyl-β-alanine (TNPh-β-alanine) by amide coupling method. The binding interaction of a monoclonal anti-TNT Ab (M-TNT Ab) with TNPh-β-alanine immobilized thiolate monolayer surface was monitored and evaluated for detection of TNT based on the principle of indirect competitive immunoreaction. Here, the competition between the self-assembled TNT derivative and the TNT in solution for binding with antibody yields in the response signal that is inversely proportional to the concentration of TNT in the linear detection range. With the present immunoassay format, TNT could be detected in the concentration range from 0.008 ng/ml (8 ppt) to 30 ng/ml (30 ppb). The response time for an immunoreaction was 2 min and one immunocycle could be done with in 4 min including surface regeneration. Bound antibodies could be easily eluted from the self-assembled immunosurface at high recoveries (more than 100 cycles) using pepsin solution without any damage to the TNT derivatives immobilized on the surface. The compact self-assembled monolayer was highly stable and prevented the non-specific adsorption of proteins on the surface favoring error free measurement.  相似文献   

19.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

20.
Nano-montmorillonites belong to aluminosilicate clay minerals with innocuity, high specific surface area, ion exchange, and favorable adsorption property. Due to the excellent properties, montmorillonites can be used as labels for the electrochemical immunosensors. In this study, nano-montmorillonites were converted to sodium montmorillonites (Na-Mont) and further utilized for the immobilization of thionine (TH), horseradish peroxidase (HRP) and the secondary anti-zeranol antibody (Ab2). The modified particles, Na-Mont-TH-HRP-Ab2 were used as labels for immunosensors to detect zeranol. This protocol was used to prepare the immunosensor with the primary antibody (Ab1) immobilized onto the nanoporous gold films (NPG) modified glassy carbon electrode (GCE) surface. Within zeranol concentration range (0.01–12 ng mL−1), a linear calibration plot (Y = 0.4326 + 8.713 X, r = 0.9996) was obtained with a detection limit of 3 pg mL−1 under optimal conditions. The proposed immunosensor showed good reproducibility, selectivity, and stability. This new type of immunosensors with montmorillonites and NPG as labels may provide potential applications for the detection of zeranol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号