首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for determining the strain characteristics of interatomic bonds in crystals of ternary oxides AB 1 2/′ B 1 2/″ O3 with perovskite structure, i.e., AB 1 2/′ B 1 2/″ O3 (B″ = Nb, Ta, Sb, Re, or Bi) and AB 1 2/′2+ B 1 2/″6+ O3 (B″ = Mo, W, Re, Os, or U), is developed. A linear relationship is established between the effective lengths of unstrained B-O bonds (l 0BO) and the lengths of unstrained B′-O (l 0B′O) and B″-O (l 0B″O) bonds, which differs from the Vegard rule. The found values of l 0B″O for ternary oxides with perovskite structure turned out to be close to the average interatomic B″-O distances in crystals of polymorphic phases of low-symmetry simple oxides. It is shown that the average length of the unstrained Pb-O bond in PbB 1 2/′ B 1 2/″ O3 perovskites corresponds to the length of the same bond in binary oxides PbBO3. For ternary oxides with perovskite structure, a linear correlation between the bond-strain energy and the temperature of their transition to the cubic phase is established. A linear correlation is found between the ratios of the Curie temperatures and the bond-strain energy for lead niobates and tantalates.  相似文献   

2.
In the process of studying the phase formation in the Li2CO3-CaO-B2O3-NaCl system, new Ca,Na, Li-carbonate-borate has been synthesized under hydrothermal conditions. The crystal structure of carbonate-borate with the crystallochemical formula Ca4(Ca0.7Na0.3)3(Na0.70.3)Li5[B 12 t B 10 Δ O36(O,OH)6](CO3)(OH) · (OH,H2O) was refined to R hkl = 0.0716 by the least squares method in the isotropic approximation of atomic thermal vibrations without the preliminary knowledge of the chemical composition and the formula (sp. gr. R3, a rh = 13.05(2) Å, α = 40.32(7)]°, V = 838(2) Å3, a h = 8.99(2), c h = 35.91(2) Å, V = 2513(2) Å3, Z = 3, d calcd = 2.62 g/cm3, Syntex P $\bar 1$ diffractometer, 3459 reflections, 2θ-θ method, λMo). The structure has a new boron-oxygen radical [B 12 t B 10 Δ O36(O,OH)6] ∞∞ 15? , a double layer of nine-membered [B 6 t B 3 Δ O15(O,OH)3]7.5?-rings bound by BO3-triangles, and twelve-membered [B 6 t B 6 Δ O19.5(O,OH)3]7.5? rings. This allows one to relate this compound to megaborates with complex boron-oxygen radicals. The structure is built from two types of blocks consisting of Ca,Na,B-and Li,B-polyhedra alternating along the c-axis, which explains the perfect cleavage of the crystals along the (0001) plane.  相似文献   

3.
Single crystals of acid salt hydrates M I{M II[H(XO4)2](H2O)2}, where M I, M II, and X are K, Zn, and S (I); K, Mn, and S (II); Cs, Mn, and S (III); or K, Mn, and Se (IV), respectively, were synthesized and studied by X-ray diffraction analysis. Compounds I–IV (space group $P\bar 1$ ) are isostructural to each other and to hydrate KMg[H(SO4)2](H2O)2 (V) studied earlier. Structures I–V, especially, the M I-O, M II-O, and X-O distances and the O?H?O (2.44–2.48 Å) and Ow-H?O (2.70–2.81 Å) hydrogen bonds, are discussed.  相似文献   

4.
A product of the insertion of two isothiocyanate molecules into the same W-Cl bond, namely, W-Cl-WCl5{N(Et)C(S)N(Et)C(S)Cl} (I), is synthesized by the reaction of WCl6 with EtNCS in a dichloroethane solution. The hydrolysis of compound I results in the formation of single crystals of the complex . The structure of crystals II is determined using X-ray diffraction. It is demonstrated that structural units of crystals II are the [WVIOCl5]? anionic complexes and the ethyl-(4-ethyl-5-thioxo[1.2.4]dithiazolidin-3-ylidene)ammonium cations.  相似文献   

5.
Single crystals of the compound Na3(H3O)[UO2(SeO3)2]2 · H2O (I) have been synthesized, and their structure has been investigated using X-ray diffraction. Compound I crystallizes in the triclinic system with the unit cell parameters a = 9.543(6)Å, b = 9.602(7)Å, c = 11.742(8)Å, α = 66.693(16)°, β = 84.10(2)°, γ = 63.686(14)°, space group P \(\bar 1\), Z = 2, and R = 0.0734. The uranium-containing structural units of the crystals are [UO2(SeO3)2]2? chains, which belong to the crystal-chemical group AB 2 B 11 (A = UO 2 2+ , B 2 = SeO 3 2? , B 11 = SeO 3 2? ) of the uranyl complexes. The structures of the compounds containing the [UO2(SeO3)2]2? anionic complexes are compared.  相似文献   

6.
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO2(C3H2O4)(Urea)2] (I) and [UO2(C3H2O4)(Urea)3] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO2(C2O4)(Urea)3] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO2(C3H2O4)(Urea)2] belonging to the crystal-chemical group AT11M21 (A = UO22+, T11 = C3H2O42-, M1 = Urea) of uranyl complexes. Crystals II and III are composed of the molecular complexes [UO2(L)(Urea)3], where L = C3H2O42- or C2O42-, belonging to the crystal-chemical group AB01M31 (A = UO22+, B01 = C3H2O42- or C2O42-, M1 = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.  相似文献   

7.
Symmetry analysis of the low-temperature phase of RbMnCl3 crystals with the monoclinic axis perpendicular to the sixfold axis of the high-temperature phase showed that its space group is either C 2h 3 or C 2h 6 The distribution of normal vibrations over the irreducible representations of the high-temperature phase is refined, and the symmetry relationships for normal vibrations of all possible low-temperature phases are tabulated. The model of the potential function of the crystal is obtained by the nonempirical Kim-Gordon method. This model allows one to establish the existence of the saddle point of the potential surface and several harmonically unstable modes corresponding to correlated rotations of rigid MnCl6 and Mn2Cl9 polyhedra. The absolute energy minimum is determined by deforming the lattice along the eigenvector of the E1g mode within the sp. gr.. C 2h 6 .  相似文献   

8.
Single crystals of UO2(n-C3H7COO)2(H2O)2 (I) and Mg(H2O)6[UO2(n-C3H7COO)3]2 (II) are synthesized. Their IR-spectroscopic and X-ray diffraction studies are performed. Crystals I are monoclinic, a = 9.8124(7) Å, b = 19.2394(14) Å, c = 12.9251(11) Å, β = 122.423(1)°, space group P21/c, Z = 6, and R = 0.0268. Crystals II are cubic, a = 15.6935(6) Å, space group $Pa\bar 3$ , Z = 4, and R = 0.0173. The main structural units of I and II are [UO2(C3H7COO)2(H2O)2] molecules and [UO2(C3H7COO)3]? anionic complexes, respectively, which belong to AB 2 01 M 2 1 (I) and AB 3 01 (II) crystal chemical groups of uranyl complexes (A = UO 2 2+ , B 01 = C3H7COO?, and M 1 = H2O). A crystal chemical analysis of UO2 L 2 · nH2O compounds, where L is a carboxylate ion, is performed.  相似文献   

9.
Succinic acid salts-tris(2-hydroxyethyl)ammonium succinate (C6H16NO3) 2 + C4H4O 4 2? (monoclinic crystals, sp. gr. P21/c, Z = 4) and tris(2-hydroxyethyl)ammonium hydrogen succinate (C6H16NO3)+C4H5O 4 ? (monoclinic crystals, sp. gr. P21/c, Z = 4)—were synthesized and structurally characterized. The specific features of the three-dimensional structures of tris(2-hydroxyethyl)ammonium salts of succinic acid are considered. The role of interionic electrostatic interactions in the structure stabilization and the formation of products of composition 1: 1 and 1: 2 derived from succinic acid is discussed.  相似文献   

10.
Elastic and dielectric properties of CdP2, ZnP2, and ZnAs2 single crystals are investigated at frequencies of 102, 103, 104, 106, and 107 Hz in the [00l], [h00], and [hk0] directions in the temperature range 78–400 K. The elastic constants, the Gruneisen parameters, and the force constants of the crystals are calculated from the measured ultrasonic velocities. The elastic constants Cij decrease with an increase in temperature and anomalously change in narrow (ΔT = 10–20 K) temperature ranges. The permittivity sharply increases from ε ≈ 7–14 at 78–150 K to ε ≈ 102–103 in the temperature range 175–225 K without any signs of a structural phase transition. The behavior of the temperature-frequency dependences of the complex permittivity ε*(f, T) is typical of relaxation processes. The dielectric relaxation in AIIB 2 V is considered on the basis of the model of isolated defects. The conuctivity σ of the single crystals under study is a sum of the frequency-dependent (hopping) conductivity σh and the conductivity σs that is typical of semiconductors. The hopping conductivity increases with an increase in frequency according to the law σ h fα, where α < 1 at low temperatures and α > 1 at high temperatures.  相似文献   

11.
The EPR spectra of Fe3+ impurity ions in NaZr2(PO4)3 single crystals at 300 K are investigated, and the spin Hamiltonian of these ions is determined. A comparative analysis of the spin-Hamiltonian and crystal-field tensors is performed using the maximum invariant component method. It is demonstrated that Fe3+ impurity ions substitute for Zr4+ ions with local compensator ions located in cavities of the B type. It is revealed that the invariant of the spin-Hamiltonian tensor B4 and the crystal-field tensor V 4 44 depend substantially on the mutual arrangement of ions in the first and second coordination spheres. The corresponding dependences are analyzed.  相似文献   

12.
The molecular and crystal structures of chiral 1R, 4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-one (I) are determined by X-ray diffraction analysis. Single crystals of I are orthorhombic, a = 8.997(2) Å, b = 11.314(2) Å, c = 14.847(3) Å, V = 1511.3(5) Å3, Z = 4, and space group P212121. The cyclohexanone ring in molecules of compound I has a chair-type conformation with the axial methyl and equatorial isopropyl groups. The enone and benzylidene groupings are nonplanar. The considerable distortion of bond angles at the sp 2 carbon atoms of the benzylidene grouping and the puckering parameters of the cyclohexanone ring in the structure of I are close to those observed for the previously studied compound with the p-methoxy substituent. In the crystal, molecules I are linked by very short intermolecular hydrogen bonds .  相似文献   

13.
A new compound (Rb0.50Ba0.25)[UO2(CH3COO)3] is synthesized and its crystal structure is studied by X-ray diffraction. The compound crystallizes in the form of yellow plates belonging to the cubic crystal system. The unit cell parameter a = 17.0367(1) Å, V = 4944.89(5) Å3, space group I \(\bar 4\)3d, Z = 16, and R = 0.0182. The coordination polyhedron of the uranium atom is a hexagonal bipyramid with oxygen atoms of three acetate groups and the uranyl group in the vertices. The crystal chemical formula of the uranium-containing group is AB 3 01 (A = UO 2 2+ , B 01 = CH3COO?). The oxygen atoms of the acetate groups that enter the coordination polyhedron of uranium are bound to barium and rubidium atoms.  相似文献   

14.
The crystal structures of Cs[CuB10H10] (I) and (CH3)2NH2[CuB10H10] (II) are studied (R = 0.0398 and 0.0510 for 1225 and 2728 observed reflections in I and II, respectively). Crystals I and II are built of [(CuB10H10)?]∞ anionic chains and cations. The distorted tetrahedral coordination of the Cu+ ions is formed by four pairs of B-H atoms from two polyhedral anions. The Cu-B bond lengths in I and II are 2.159–2.287(6) and 2.130–2.285(9) Å, respectively. The coordination of the Cu+ ions in II includes only edges between apical and equatorial vertices of the anions. In I, both the edges of the apical belt and those between two equatorial vertices are involved in coordination. The ability of the B10H 10 2? anion to coordinate metals by the equatorial edge is established for the first time.  相似文献   

15.
Compound (CN3H6)2[(UO2)2(C2O4)(CH3COO)4] is synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction [a = 8.5264(2) Å, b = 13.8438(4) Å, c = 10.7284(2) Å, β = 103.543(1)°, space group P21/n, Z = 2, and R = 0.0258]. The main structural units of the crystals are binuclear [(UO2)2C2O4(CH3COO)4]2? groups, which belong to the A 2 K 02 B 4 01 crystal chemical group of uranyl complexes (A = UO 2 2+ , K 02 = C2O 4 2? , and B 01 = CH3COO?). The coordination polyhedron of the uranium atom is the UO8 hexagonal bipyramid with the oxygen atoms of the uranyl ion at the axial positions. Uranium-containing groups and guanidinium cations are connected by electrostatic interactions and by the hydrogen bond system, which involves hydrogen atoms of guanidinium cations and oxygen atoms of oxalate and acetate anions. The results of the spectroscopic study of the compound agree with the X-ray diffraction data.  相似文献   

16.
Electrical conductivity σ of ScF3 single crystals (sp. gr. \(Pm\overline 3 m\), ReO3 structure type) has been studied by impedance spectroscopy and compared with the electrical conductivity of rare earth HoF3 (β-YF3 type) and LaF3 (tysonite type) trifluorides. ScF3 crystals obtained by Bridgman directional solidification have ionic conductivity σ = 4 × 10–8 S/cm at 673 K. It is smaller than the σ values for LaF3 (sp. gr. \(P\overline 3 c1\)) and HoF3 (sp. gr. Pnma) single crystals by a factor of 104–105. The low conductivity of ScF3 crystals is due to the weak coordinating ability (coordination number CN = 6) and low electronic polarizability (αcat = 1.1 Å3) of Sc3+ ions. Mobile VF+ vacancies and less mobile interstitial Vi- ions (defects are formed according to the Frenkel mechanism) are involved in the ion transport. HoF3 and LaF3 single crystals have a high coordinating ability (CN = 9 for Ho3+ and CN = 11 for La3+) and a high electronic polarizability of cations (αcat = 1.6–1.9 Å3 for Ho3+ and αcat = 2.2 Å3 for La3+). Only mobile VF+ vacancies (defects are formed according to the Schottky mechanism) are involved in ion transport.  相似文献   

17.
The combinatorial-topological analysis of the structures of framework Li,Ge-germanates of the compositions Li2GeVIGe 2 IV O6(OH)2 (sp. gr. B 2/b), Li2GeVIGe 3 IV O9 (sp. gr.Pcca), Li4Ge 2 VI Ge 7 VI O20 (sp. gr. C2), and Li2GeVIGe 6 IV O15 (sp. gr. Pbcn) has been made with the separation of subpolyhedral structural units (SPSUs) built by octahedra and tetrahedra. The topologically invariant SPSUs are separated in three-dimensional frameworks of the structures. A possible mechanism of the matrix assemblage from the SPSU invariants in crystal structures of the framework Li,Ge-germanates is suggested.  相似文献   

18.
Crystalline hydrogen selenate-phosphates M 2H3(SeO4)(PO4) [M = Rb (I) or K (II)] and M 4H5(SeO4)3(PO4) [M = K (III) or Na (IV)] were obtained by reactions of Rb, K, and Na carbonates with mixtures of selenic and phosphoric acid solutions. The X-ray structure study of single crystals revealed that I and II are isostructural (sp. gr. Pn). In these structures, SeO4 and H3PO4 tetrahedra are linked by hydrogen bonds to form corrugated layers. Structures III and IV (sp. gr. $P\bar 1$ ) have similar arrangements of non-hydrogen atoms but different hydrogen-bond systems. In III = K4(HSeO4)2{H[H(Se,P)O4]2}, the HSeO4 groups branch from the infinite anionic {H[H(Se,P)O4]2} chains. In IV = Na4[H(SeO4)2]{H[H1.5(Se, P)O4]2}, the anionic {H[H1.5(Se,P)O4]2} chains are crosslinked by hydrogen bonds formed by the [H(SeO4)2] dimers.  相似文献   

19.
The symmetry (sp. gr.I $\bar 4$ 3d) and lattice parameters have been determined for the first time for Cs5(H2SO4)2(H2PO4)3 crystals in the temperature range from 172 to 390 K. The thermal and optical properties of crystals, as well as their conductivity, have been investigated at elevated temperatures. It is shown that a crystal heated to T = 365 K undergoes a phase transition with symmetry lowering to the tetragonal phase (with the parameters a = 4.965(1) Å and c = 5.016(1) Å), while at T ≈ 390 K a phase transition to the cubic phase is presumably observed. With a decrease in temperature, a phase transition without a change in symmetry occurs at T = 240 K.  相似文献   

20.
The structure of Ba0.75Lu0.25F2.25 crystals grown from melt has been studied by X-ray diffraction analysis (4729 measured reflections, 269 independent reflections with I > σ (I), R = 1.1%, R w = 0.7%). The crystals are crystallized in the cubic system, sp. gr. Pm $\bar 3$ m, with the lattice parameter a = 5.9870(9) Å. A new complex of defects is singled out—a supercluster of the composition {R 8[Ba6F71]}. This supercluster differs from the well-known rare earth octahedral supercluster of the composition {Ba8[R 6F68-69]} because its nucleus is formed not by RE cations but by an alkali earth cation, Ba. The {R 8[Ba6F71]} supercluster has a configuration close to that of the [B14F64] fragment of the fluorite structure and can replace the latter isomorphously. The model of the Ba0.75Lu0.25F2.25 crystals consisting of coherently intergrown isostructural microphases having different chemical compositions is characterized by the good agreement of the calculated and experimentally determined occupancies of the F1? positions. The comparison of the Ba0.8Yb0.2F2.2 (phase studied earlier) and Ba0.75Lu0.25F2.25 structures demonstrates the evolution of the defect structure along the series of rare earths with the corresponding change of the sp. gr. Fm $\bar 3$ m by the sp. gr. Pm $\bar 3$ m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号