首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The confirmation that N-substituted imidodiacetic acids, as small and simple ligand systems containing amines and carboxylic acids, could be coordinated to the tricarbonyl core and form inert complexes with [99mTc (CO)3(H2O)3]+, is demonstrated. The HPLC quality control results of 99mTc-carbonyl tagged IDA molecules, performed by gradient HPLC, have shown that HIDA, EHIDA and p-butyl-IDA form complexes with [99mTc(CO)3(H2O)3]+, with a labeling yield of ~90% for each of 99mTc(CO)3 IDA derivatives. However, the changes in the structure of labeled compounds, e.g., EHIDA, influence the changes in the biological behavior. In comparison with 99mTc-EHIDA, the biliary excretion of 99mTc(CO)3 EHIDA was lower, but the urinary excretion higher. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

3.
Technetium-99m (99mTc) is one of the most frequently used nuclides for single-photon emission computed tomography (SPECT) imaging because of its radiochemical characteristics, such as gamma emission of suitable energy (141 keV) and adequate half-life (6.01 h). Although triaquatricarbonyl 99mTc cation ([99mTc(CO)3(H2O)3]+) has several advantages as a 99mTc-labeling agent, e.g., compact chelate size, chelate stability, and simplicity of preparation, its synthetic protocols should be improved. Because microwave heating is a convenient method for synthetic reactions, we studied the effect of microwave irradiation on the synthesis of 99mTc tricarbonyl complexes. We found several factors beneficial for the preparation of nuclear medicines. In particular, microwave heating promoted one-pot syntheses of 99mTc tricarbonyl chelates in a short time. In addition, the 99mTc tricarbonyl complex could be obtained using low concentrations of ligands.  相似文献   

4.
The feasibility of using tetragonal nano-zirconia (t-ZrO2) as an effective sorbent for developing a 99Mo/99mTc chromatographic generator was demonstrated. The structural characteristics of the sorbent matrix were investigated by different analytical techniques such as XRD, BET surface area analysis, FT-IR, TEM etc. The material synthesized was nanocrystalline, in tetragonal phase with an average particle size of ~7 nm and a large surface area of 340 m2 g?1. The equilibrium sorption capacity of t-ZrO2 is >250 mg Mo g?1. The present study indicates that 99Mo is both strongly and selectively retained by t-ZrO2 at acidic pH and 99mTc could be readily eluted from it, using 0.9% NaCl solution. A 9.25 GBq (250 mCi) t-ZrO2 based chromatographic 99Mo/99mTc generator was developed and its performance was repeatedly evaluated for 10 days. 99mTc could be eluted with >85% yield having acceptable radionuclidic, radiochemical and chemical purity for clinical applications. The compatibility of the product in the preparation of 99mTc labeled formulations such as 99mTc-EC and 99mTc-DMSA was evaluated and found to be satisfactory.  相似文献   

5.
In this work alumina 99Mo-molybdate (VI) gel is evaluated as a column matrix for use in the preparation of small chromatographic column type 99mTc generator. Alumina molybdate (VI) gel is prepared by dissolving inactive MoO3 with aluminum foil in 5 M NaOH solution containing 99Mo radiotracer. After complete dissolution, 0.5 H2O2 was added to the reaction mixture solution and acidified to pH 5.5 with concentrated HNO3. The formed AlMo precipitate was washed with NaNO3 solution, dried at 50 °C for 24 h and then packed in the form of a chromatographic column for elution of the generated 99mTc radionuclide with physiological saline solution (0.9 % NaCl). Greater than 86 % of the generated 99mTc activity is immediately and reproducibly eluted with passing 10 mL of the saline solution through 2.0 g of alumina 99Mo-molybdate column bed at a flow rate of about 1.0 mL/min. The high radiochemical ≥98.6 % TcO4 ?, radionuclidic ≥99.90 % 99mTc and chemical purities of the eluates satisfy the specifications for use in nuclear medicine.  相似文献   

6.
Large columns containing aluminum oxide (Al2O3) or gel (e.g. zirconium molybdate) are needed to prepare 98Mo(n,γ)99Mo→99mTc column chromatographic generators that results in large elution volumes containing relatively high 99Mo impurity and low concentrations of 99mTc. The decrease in radioactive concentration or specific volume concentration of 99mTc places a limitation on some pharmaceutical kits (DTPA, MIBI, ECD, etc.) or clinical procedures. We report on the post elution concentration of 99mTc using in house prepared lead cation-exchange and alumina columns. Using these columns high bolus volumes (10–60 mL 0.02M sodium sulfate) of 99mTc can conveniently be concentrated in 1 mL of physiological saline. This approach also works very effectively to prepare high specific volume solutions of 99mTc-pertechnetate from a fission based 99Mo/99mTc generator in the second week of its normal working life.  相似文献   

7.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

8.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

9.
The use of the 99Mo99mTc generator in nuclear medicine is well established world wide. The production of the 99Mo (T1/2 = 66 h) parent as a fission product of 235U is largely based on the use of reactor technology. From the early 1990's accelerator based production methods to provide either direct produced 99mTc or the parent 99Mo, were studied and suggested as potential alternatives to the reactor based production of 99Mo. A possible pathway for the charged particle production of 99mTc and 99Mo is irradiation of molybdenum metal with protons via the reaction 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo, respectively. The earlier published excitation functions show large differences in their maximum that result in large differences in the calculated yields. We therefore decided to study the excitation function for these proton-induced reactions. In this work the newly measured excitation functions as well as an evaluation of earlier measured data and a discussion of the observed disagreements are presented.  相似文献   

10.
A method is discussed for separating99mTc from99Mo by dissolution and reprecipitation of CaMoO4 containing99Mo-99mTc.99mTc can be obtained successfully with a yield of about 80% and with a radionuclidic purity as high as over 99.7%. On the other hand, by agitating Ca99 MoO4 solid with 0.9% NaCl aqueous solution,99mTc can directly be obtained with a yield of about 30% without any impurities.  相似文献   

11.
The reaction of 99mTc of different oxidation states (+7, +4) with 2-thiouracil and 5-nitrobarbituric acid have been studied at different temperatures, pH and concentrations. The reaction mixtures have been analyzed at different times using thin layer chromatography (TLC) and a radio detector to show the peaks at the plates. 99mTc is obtained from the Mo generators with oxidation state (+7). The use of SnCl2 as a reducing agent gave 99mTc with oxidation state (+4). It is very difficult to separate the complexes formed from the reactions in very small concentration. The percentage of 99mTc and its oxidation state involved in the complexes can be determined. The labeling efficiencies (percentage of complex) in the reaction of 99mTc+7 with 5-nitro-barbituric-acid increases mostly at pH  10. Both oxidation states of 99mTc(+7, +4) can be detected at pH’s 4 and 10, but at pH  4, the reduced form 99mTCO2, is more pronounced. At pH  7 no complexes were detected and most of 99mTc remains as 99mTCO4 . By increasing the ligand concentration, the labeling efficiencies of the complex increases. For the reaction of 99mTc of oxidation states (+4, +7) with 2-thiouracil at different temperatures and analytical times it is concluded that several complexes with different Rf values were observed in equilibrium and most of these complexes were unstable.  相似文献   

12.
The optimization of the radiolabeling yield of ciprofloxacin analogous, norfloxacin, with technetium-99m (99mTc) was described. Dependence of the labeling yield of 99mTc–norfloxacin complex on the concentration of norfloxacin, SnCl2·2H2O content, pH of the reaction mixture and reaction time was studied. Norfloxacin was labeled with 99mTc at pH 3 with a labeling yield of 95.4% by using 5 mg norfloxacin, 50 μg SnCl2·2H2O and 30 min reaction time. The formed 99mTc–norfloxacin complex was stable for a time up to 3 h. Biological distribution of 99mTc–norfloxacin complex was investigated in experimentally induced inflammation rats using Staphylococcus aureus (bacterial infection model) and heat killed Staphylococcus aureus and turpentine oil (sterile inflammation model). In case of bacterial infection, the T/NT value for 99mTc–norfloxacin complex was found to be 6.9 ± 0.4 which was higher than that of the commercially available 99mTc–ciprofloxacin under the same experimental condition.  相似文献   

13.
The aim of this study is to prepare radiolabeled guanine with 99mTc(CO)3+ core. For this purpose, guanine has been radiolabeled with 99mTc(CO)3+ core. Quality control study of radiolabeled guanine molecule with 99mTc(CO)3+ core was performed by thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC). The results showed that the radiolabeling yield was quite high (94 ± 3%). Beside that 99mTc(CO)3–Gua complex has showed good in vitro stability during the 24 h period. Radiopharmaceutical potential of this complex was evaluated in Wistar Albino Rats. It was concluded that 99mTc(CO)3–Gua could be used as a nucleotide radiopharmaceutical for in vivo applications.  相似文献   

14.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of 99mTc(CO)3-labeled pegylated (PEG) 2-nitroimidazoles for tumor hypoxia imaging. The novel 2-nitroimidazole derivatives were successfully synthesized by conjugation of tridendate chelators to 2-nitroimidazole via PEG3 linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get cationic [99mTc(CO)3(BPA-PEG3-NIM)]+, neutral [99mTc(CO)3(AOPA-PEG3-NIM)] and anionic [99mTc(CO)3(IDA-PEG3-NIM)]? respectively, all of which were hydrophilic and stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3-labeled pegylated 2-nitroimidazoles accumulated in the tumor with low uptake. 99mTc-chelate and charge had significant impact on partition coefficient, radiotracer tumor uptake and pharmacokinetic properties. The results indicate the need for synthetic modification of the parent 2-nitroimidazole derivatives and the 99mTc-chelate with a view to improve the tumor targeting efficacy and in vivo kinetic profiles.  相似文献   

15.
The in vivo and in vitro stability of99mTc hydroxyethlylidene diphosphonate, 99mTc methylenediphosphonate and99mTc pyrophosphate in plasma has been studied using paper chromatographic technique as the analytical tool. The results indicate that the amounts of99mTc activity found both at the origin and Rf range of99mTcO4 ? for in vivo experiments are slightly greater than those for either in vitro or control experiments. However, this amount of99mTc activity represents about 0.16–0.4% of the injected dose. Therefore, it is suggested that99mTc phosphorus radiopharmaceuticals are stable in vivo and neither oxidation nor hydrolysis of these bone imaging agents occurs in the blood.  相似文献   

16.
The chemical condition of99mTc eluate obtained from a99Mo-99mTc generator is a function of the source, time elapsed after elution and age of the eluate. The radiochemical purity and stability of99mTc labeled MAb-170 (Tru-Scint®ADTM, photoactivated monoclonal antibody kit) preparations was evaluated comparing pertechnetate source of known age and elution history. The effect of H2O2, a radiolytic impurity in99mTc eluates, on the active kit components stannous ion and photoactivated MAb and radiolabeling, yield has been investigated. The lyophilized Tru-Scint® ADTM kit has been labeled with 20 to 80 mCi in 0.5 to 4.0 ml of Sodium Pertechnetate99mTc Injection, USP. The eluates were obtained from three brands of generators and used up to six hours after elution. The kits were reconstituted either with Sodium Pertechnetate99mTc Injection, USP or Sodium Chloride Injection, USP, 0.9% containing known amounts of H2O2. The reconstituted kits were analyzed for radiolabeling yield and radiochemical impurities, stannous ion and protein sulfhydryl group. The results indicated that the radiolabeling yield is a function of both the chemical condition of99mTc eluate, generator brand and the radiolabeling parameters like reconstitution volume and activity. The observed radiolabeling yield differences did not depend on the amount of chemical technetium in the eluate. The major radiochemical impurities at 15-minute post labeling have been identified as the99mTc-buffer complex and column adsorbed reduced99mTc (99mTc-Ad) species and not the unreduced99mTcO 4 .  相似文献   

17.
Determination of technetium-99 in soils and radioactive wastes using ICP-MS   总被引:1,自引:0,他引:1  
Three methods have been used for the determination of 99Tc in soils and solid radioactive wastes using 99mTc as a yield monitor. In the method one and three the samples were leached in low concentrated nitric and sulphuric acid. Many contaminants were then co-precipitated with Fe(OH)3 in alkali media and Tc in the supernatant was separated using anion-exchange extraction chromatography. There were made also some studies how to improve the chemical recovery of 99mTc in the process of chromatography. In the method two the sample was ashed and then leached in 8 mol dm−3 HNO3 and after iron precipitation, technetium was separated on chromatographic column. The chemical recovery of 99mTc was optimized in the process of chromatography and leaching. Typical recoveries of technetium determined with 99mTc tracer for all these methods were in the range 39 %–87 %. The 99Tc activity was measured using proportional low-background beta detector after one week of staying to allow decay of 99mTc activity. 99Tc was also determined by the non-radiometric method using inductively coupled plasma mass spectrometer.  相似文献   

18.
Summary The organometallic precursor fac-[99mTc(CO)3(H2O)3]+ was reacted with N-ethoxy, N-ethyl dithiocarbamate (NOET) in phosphate buffered saline (pH 7.4) at room temperature for 30 minutes to produce the 99mTc(CO)3-NOET complex. The radiochemical purity (RCP) of the product was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature (RT) was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The biodistribution comparison in mice of the 99mTc(CO)3-NOET complex and the 99mTcN-NOET complex showed that the former had a lower heart and brain uptake as compared to that of the latter, suggesting the incorporation of the [99mTc(CO)3]+ core into the NOET ligand does not improve the biological features as a myocardial imaging agent.  相似文献   

19.
Diethylenetriamine pentaacetic acid (DTPA) was labeled with 99mTc in three different ways, resulting in ‘classic’ 99mTc-DTPA, 99mTc(CO)3-DTPA and 99mTc(CO)2(NO)-DTPA. The biodistribution of the formed DTPA-complexes was studied in mice with a special emphasis on the behavior of the novel tricarbonyl and dicarbonyl-nitrosyl complexes, which was clearly differing from that of ‘classic’ 99mTc-DTPA. The conversion of a Tc-tricarbonyl complex to a Tc-dicarbonyl-nitrosyl complex using NO+ reagents offers a synthetic tool for preparing a novel class of 99mTc labeled compounds.  相似文献   

20.
To develop potential new Tc radiopharmaceuticals, a novel compound [99mTc(CO)2(NO)(EHIDA)]0 (EHIDA: 2,6-diethylphenylcarbamoylmethyliminodiacetic acid) has been prepared by reacting [99mTc(CO)3)(EHIDA)] with NOBF4 both in water and acetonitrile. The conversion of [99mTc(CO)3)(EHIDA)] to [99mTc(CO)2(NO)(EHIDA)]0 was supported by TLC, HPLC and eletrophoresis. The radiochemical purity (more than 99%) was proved by TLC and HPLC. The biodistribution in mice demonstrated that [Tc(CO)2(NO)(EHIDA)]0 showed higher uptake in blood, kidney and lung (15 min, blood: 19.24±2.95; kidney: 13.61±3.49; lung: 10.81±1.09.) but a lower uptake in liver (15 min, 5.73±0.74). The slower clearances (120 min, blood: 12.75±1.34; kidney: 13.61±3.49) from blood and kidney were also found. This research describes two methods for the conversion of [99mTc(CO)3]+ into [99mTc(CO)2)(NO)]2+ by using NOBF4 as the source of NO+ both in organic solvent and water. The latter method offers the possibility to introduce the NO-group in high yield in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号