首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of (CH3)3SiC(Cl)=CRR′ (R = R′ = H; R = H, R′ = CH3; R = R′ = CH3; R = R′ = C6H5) with organolithium, reagents was examined. Alkenylsilanes of structure (CH3)3SiCHCH-alkyl were obtained from (CH3)3SiC(Cl)CH2 and alkyllithium reagents. Substrates with R or R′ ≠ H inhibited addition of the organolithium species to the double bond and led to products derived from chlorinelithium exchange (R = R′ = C6H5) or proton abstraction from an allylic methyl site (R = H, R′ = CH3; R = R′ = CH3).  相似文献   

2.
Abstract

Dialkylbenzylphosphine imides C6H5CH2–PRR′[dbnd]N″ (R, R′ = CH3, C2H5; R″ = H, CH3, Si(CH3)3 react with aliphatic and aromatic aldehydes in benzene solution on heating to 80°C directly and in high yields according to a Horner-Wittig-reaction with formation of an olefine whereas ketones like benzophenone and acetophenone only perform an O/NR″ exchange (R″ = H).

Dialkylbenzylphosphinimide C6H5CH2–PRR′[dbnd]N″ mit R, R′ = CH3, C2H5 und R″ = H, CH3, Si(CH3)3 reagieren mit aliphatischen und aromatischen Aldehyden in benzolischer Lösung beim Erwärmen auf 80°C direkt und mit hohen Ausbeuten im Sinne einer Horner-Wittig-Reaktion unter Olefinbildung, während sich mit Ketonen wie Benzophenon oder Acetophenon nur ein O/NR″-Austausch (R″ = H) vollzieht.  相似文献   

3.
A series of [Cp2TiL]+[RR′NCS2]? complexes, where L is the conjugate base of acetylacetone, benzoylacetone or 8-hydroxyquinoline and R = CH3, R′ = C6H5CH2; R = C2H5, R′ = C6H4CH3; R = H, R′ = C5H9; RR′ = C6H12, have been synthesised in aqueous medium by the reaction of [Cp2TiL]+Cl? with RR′NCS?2Na+. Conductivity measurements in nitrobenzene solution indicate that these complexes are electrolytes. Both the IR and NMR studies demonstrate that the ligand L is chelating in all these complexes. Consequently, tetrahedral coordination about the titanium atom is proposed. In addition to these studies, elemental analyses and magnetic susceptibility have been carried out for these complexes.  相似文献   

4.
α-Halocarbeneporphyriniron complexes, Fe(P)(C(Cl)R) react with alcohols or thiols with substitution of the chlorine atom by OR′ or SR′ groups. This reaction has been used to obtain new carbeneporphyriniron complexes in which the carbene ligand is substituted by two electrodonating groups. The complexes Fe(P)(C(XR′)R) with XR′ = OCH3 or OC2H5, R = CH3 or (CH3)2CH and P = TPP (tetraphenylporphyrin) or TTP (tetratolylporphyrin) and with XR′ = SCH2C6H5, R = CH3 and P = TPP or TTP, have been isolated and fully characterized.  相似文献   

5.
Preparation of New Alkylaminofluorosilanes Aminofluorosilanes of the composition RSiF2NR′R″ (R = H, CH3, C2H3, C6H5; R′ = Si(CH3)3; R″ = C(CH3)3; R′ = R″ = i-C3H7), as well as C6H5SiF2N[C(CH3)2CH2]2CH2 are obtained by the reaction of fluorosilanes with the lithium salts of the corresponding amines in a molar ratio 1:1. The further reaction of these compounds with the lithium salts of alkylamines and anilin leads to the formation of the diaminofluorosilanes RSiFNR′R″NHR? (R? = C(CH3)3, i-C3H7, C6H5). The 1H, 19F, 29Si n.m.r. and mass spectra of the above mentioned compounds are reported.  相似文献   

6.
Compounds of the composition RR′SiFNR″Si(CH3)3 (R = H, F, CH3, C2H5, C3H7, C2H3, C6H5, C(CH3)3; R = F, CH3, C6H5; R″ = CH3, C(CH3)3, Si(CH3)3) are obtained by the reaction of silicontetrafluoride or organo-substituted silicon-fluorides with the lithium salts of alkylsilylamines in a molar ratio of 11. The disubstituted compounds RSiF(NR′Si(CH3)3)2 (R = H, F, CH3, C2H3, C6H5; R′ = CH3, C(CH3)3) result when the reactants are in a 12 molar-ratio. Likewise the unsymmetrical siliconfluorsilylamines of the formulae F2Si(NRSi(CH3)3) (NR′Si(CH3)3) (R = CH3, R′ = C(CH3)3), as well as the trisubstituted compounds FSi(NCH3Si(CH3)3)3 and FSi(NCH3Si(CH3)3)2(N(Si(CH3)3)2) were made. By reacting phenyltrifluorsilane with dialkylamines (12) C6H5SiF2NR2(R = CH3, C2H5) was obtained. The IR-, mass-, 1H and 19F NMR spectra of the above-mentioned compounds are reported.  相似文献   

7.
The [Fe443-C(CH3)C(R)C(R′)(μ-CO)2(CO)9] cluster anions have been obtained by the reaction of the Fe43-CCH3)(CO)12 anion with RCCR alkynes in boiling 3-pentanone. In the cases in which R = R′ = C6H5 or CH3, and R = H, R′ = C6H5 or t-Bu, only one isomer has been detected. In the case in which R = CH3, and R′ = C6H5, two isomers with the C(CH3)C(C6H5)C(CH3) and C(CH3)C(CH3)C(C6H5) fragments have been identified.  相似文献   

8.
The chemical and electrochemical oxidation of several substituted cyclopentadienylcyclopentadienecobalt compounds, (RC5H5)Co(C5H4R′), has been studied. When R = R′ = H, CH3, CO2 CH3 the corresponding cobalttocenium cation is obtained. When R = CH3, R′ = H, a splitting of the molecule occurs. The oxidation in the presence of H+ ions is first order in cyclopentadienylcyclopentadienecobalt.  相似文献   

9.
10.
A series of triphenylarsenic(V) derivatives Ph3As(OPri)[SC6H4N:C(R)CH2C(O)R′] have been synthesized by the reactions of triphenylarsenic(V)‐ isoproproxide, Ph3As(OPri)2 with the corresponding 2,2‐disubstituted benzothiazolines of the type (where R = CH3, R′ = CH3( 1 ); R = CH3, R′ = C6H5( 2 ); R = CH3, R′ = 4‐CH3C6H4( 3 ); R = CH3, R′ = 4‐ClC6H4( 4 ); and R = CF3, R′ = C6H5( 5 )) in equimolar ratio in refluxing benzene solution. Molecular weight measurements of these complexes show their monomeric nature in solution. Characterization of these compounds using elemental analyses, molecular weight measurements, and spectral studies (IR as well as NMR (1H and 13C)) shows the monofunctional bidentate nature of the ligands and a hexacoordination around the central arsenic atom in these organoarsenic(V) derivatives. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:76–80, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20233  相似文献   

11.
Bis(triorganometal) 1,2-dithiolates (R3M)2S2R′ [(HS)2R′ = C7H8S2 for toluene-dithiol-3,4 (H2TDT); M = Sn, Pb; R = Ph; or (HS)2R′ = C10H14S2 for 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H2DBB); M = Sn, R = CH3, C6H5; M = Pb, R = C6H5], diorganometal 1,2-dithiolates R2MS2R′ [(HS)2R′ = C6H6S2 for 1,2-dimercaptobenzene (H2DMB); M = Pb, R = CH3, C2H5, C6H5; or (HS)2R′ = H2TDT; M = Sn, R = CH3, C6H5; M = Pb, R = C6H5; or (HS)2R′ = H2DBB; M = Sn, R = CH3, C6H5; M = Pb, R = CH3, C2H2, C6H5; or (HS)2R′ = C8H6N2S2 for 2,3-dimercaptoquinoxaline (H2QDT); M = Pb, R = C6H5] and some lead(IV) and lead(II) dithiolates Pb(S2R′)n [(HS)2R′ = H2DMB, n = 2; (HS)2R′ = H2TDT, n = 2; (HS)2R′ = H2DBB, n = 1 or 2] have been prepared. Vibrational, 1H NMR, and Mössbauer spectroscopic data are consistent with pentacoordination of tin in R2SnTDT and with tetracoordination of tin in R2SnS2R′ and (R3Sn)2S2R′ in the solid state. The soluble compounds are monomeric in solution. Coupling constants for the methyltin compounds indicate tetracoordination in solution.  相似文献   

12.
X-ray analysis has been conducted on four dioxaazasilacyclooctanes R2Si(OCH2CH2)2NR′ with R = C6H5, R′ = CH3 (IV); R = C6H5, R′ = (CH3)3C (V); R = CH3, R′ = C6H5 (VI) and R = R′ = C6H5 (VII). The interatomic distances SiN measured for these compounds had the values: 2.68 (IV), 3.16 (V), 3.19 (VI) and 3.08 Å (VII), indicating weak nitrogen—silicon interaction and a virtual lack of coordinate Si ← N bonding. The data of other authors and our own evidence suggest that the Si ← N interaction in these compounds is strongly influenced by the electronic effects of Si- and N-substituents and, in particular, by the steric effects of the latter.  相似文献   

13.
Diorganogermaniumdisulfinic esters of the type R2Ge(O2SR′)2 (R = CH3, R′ = CH3, C6H5, p-CH3C6H4; R = C6H5, R′ = CH3, p-CH3C6H4) which are sensitive to hydrolysis are obtained by reaction of the corresponding diorganogermanium dichlorides with anhydrous silver sulfinates. The newly prepared compounds are thoroughly investigated on the basis of their 1H NMR, mass, IR and Raman spectra. The methyl ester (CH3)2Ge(O2SCH3)2 is compared with the already known sulfinato complex of tin with the same formal composition.  相似文献   

14.
A set of pentacoordinated dimethyltin(IV) complexes of flexible N‐protected amino acids and fluorinated β‐diketone/β‐diketones was screened for their antibacterial activity against Pseudomonas aeruginosa , Staphylococcus aureus and Streptomyces griseus . These pentacoordinated complexes of the type Me2SnAB (where : R = CH(CH3)C2H5, A1H; CH2CH(CH3)2, A2H; CH(CH3)2, A3H; CH2C6H5, A4H; and BH = R'C(O)CH2C(O)R″: R′ = C6H5, R″ = CF3, B1H; R′ = R″ = CH3, B2H; R′ = C6H5, R″ = CH3, B3H; R′ = R″ = C6H5, B4H) were generated by the reactions of dimethyltin(IV) dichloride with sodium salts of flexible N‐protected amino acids (ANa) and fluorinated β‐diketone/β‐diketones (BNa) in 1:1:1 molar ratio in refluxing dry benzene solution. Plausible structures of these complexes were elucidated on the basis of physicochemical and spectral studies. 119Sn NMR spectral data revealed the presence of pentacoordinated tin centres in these dimethyltin(IV) complexes.  相似文献   

15.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

16.
Thirty triorganotin(IV) derivatives of the type R3Sn(R′COCHCOCH2COR″) and [R3Sn]2 (R′COCHCOCHCOR″) (where R = CH3, C2H5, nC3H7, nC4H9 and C6H5 and R′ = R″ = CH3, C6H5 or R′ = C6H5, R″ = CH3) have been synthesised by the interaction of R3SnCl with mono- or disodium salt of 2, 4, 6-heptanetrione, 1-phenyl-1, 3, 5-hexanetrione and 1, 5-diphenyl-1, 3, 5-pentanetrione in 1:1 and 2:1 molar ratios, respectively. The complexes have been examined by their molecular weight, IR, PMR and elemental analyses and their tentative structures assigned. Both “Z” and “E” forms have been identified in the 1:1 complexes in equilibrium with the enol form containing five coordinate tin. The 2:1 derivatives contain one five- and other four coordinated tin(IV) except the phenyl analogue where both the tins are five coordinated.  相似文献   

17.
The proton and carbon NMR spectra for a series of substituted indenes [C9H7R, R = H, CH3, Si(CH3)3] are reported. The proton and carbon resonances for the 5-membered ring exhibit pronounced changes as a function of the substituents.  相似文献   

18.
Preparations are described of several monometallic complexes (bipym)PtR2 [bipym = 2,2′-bipyrimidyl; R = Me, CF3, Ph, 1-adamantylmethyl (adme); R2 = (CH2)4] and bimetallic analogues R2Pt(μ-bipym)PtR′2 [R = R′ = CH3, C6H5, adme; R = CH3, R′ = Ph, adme, CF3]. IR, 1H NMR and UV/visible spectroscopic characteristics of the two modes of bipyrimidyl coordination are discussed.  相似文献   

19.
The trisulfinic esters of germanium RGe(O2SR′)3 (R = R′ = CH3; R = C6H5, R′ = CH3, C2H5), which are sensitive to hydrolysis and temperature, are obtained by reaction of the corresponding trichlorides RGeCl3 with anhydrous silver sulfinates. Aromatic trisulfinic esters as well as tetrasulfinic esters of germanium could not be obtained because of steric reasons. The esters, in which the RSO2?-residues are linked to germanium via oxygen, are investigated on the basis of their 1H NMR, mass, IR and Raman spectra.  相似文献   

20.
Polymerization tests were carried out in homogeneous systems on various substituted olefins CH2=CRZ (R = H or CH3; Z = CN, COOR, C6H5 or OCOR) with compounds of titanium (IV) Ti X4?x Yx (X and/or Y = Cl, OR, NR2, C5H5, OCH2 CF3, CH3, C6H5 …) or with the bimetallic complex CH3Ti(OR)3, Al(CH3)3. The activity of the initiator varies with the co-ordination environment of the titanium and to a considerable extent with the functional groups linked to the olefin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号