首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.

Background  

Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time.  相似文献   

2.
The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.  相似文献   

3.

Background  

Many studies of cocaine-responsive gene expression have focused on changes occurring during cocaine exposure, but few studies have examined the persistence of these changes with cocaine abstinence. Persistent changes in gene expression, as well as alterations induced during abstinence may underlie long-lasting drug craving and relapse liability.  相似文献   

4.
The differences in water suppressed VOSY of the brain between a live and dead mouse have been observed in experiments. In the water suppressed VOSY of the dead mouse brain some spectral lines near the water signal have disappeared but these spectral lines do exist in the water suppressed VOSY of the live mouse brain. The approach used to obtain the water suppressed VOSY of the mouse brain is termed phase-shift presaturation, whose water suppression factor, tested by a phantom of an aqueous solution of ethanol, is greater than 1000.  相似文献   

5.

Background

Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume.

Results

There are significant differences (p < 0.05) between mouse and rat taste buds in the percentages of taste cells displaying immunoreactivity for all five markers. Rat taste buds display significantly more immunoreactivity than mice for PLCβ2 (31.8% vs 19.6%), α-gustducin (18% vs 14.6%), and synaptobrevin-2 (31.2% vs 26.3%). Mice, however, have more cells that display immunoreactivity to 5-HT (15.9% vs 13.7%) and PGP 9.5 (14.3% vs 9.4%). Mouse taste buds contain an average of 85.8 taste cells vs 68.4 taste cells in rat taste buds. The average volume of a mouse taste bud (42,000 μm3) is smaller than a rat taste bud (64,200 μm3). The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3) is significantly higher than that in the rat (1.2 cells/1000 μm3).

Conclusion

These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.
  相似文献   

6.
How orientation maps in the visual cortex of the brain develop is a matter of long standing debate. Experimental and theoretical evidence suggests that their development represents an activity-dependent self-organization process. Theoretical analysis [1] exploring this hypothesis predicted that maps at an early developmental stage are realizations of Gaussian random fields exhibiting a rigorous lower bound for their densities of topological defects, called pinwheels. As a consequence, lower pinwheel densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs. Despite of being valid for a large class of developmental models this result depends on the symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of the orientation map's statistical properties under independent space rotations and orientation shifts was assumed. However, full rotation symmetry appears to be broken by interactions of cortical neurons, e.g. selective couplings between groups of neurons with collinear orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3], stating that spatial rotations have to occur together with orientation shifts in order to be an appropriate symmetry transformation, is more consistent with this organization. Here we generalize our random field approach to this important symmetry class. We propose a new class of shift-twist symmetric Gaussian random fields and derive the general correlation functions of this ensemble. It turns out that despite strong effects of the shift-twist symmetry on the structure of the correlation functions and on the map layout the lower bound on the pinwheel densities remains unaffected, predicting pinwheel annihilation in systems with low pinwheel densities.  相似文献   

7.
The adrenal cortex of mammals consists of three concentric zones, i.e., the zona glomerulosa (zG), the zona fasciculata (zF), and the zona reticularis (zR), which secrete mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. In 1994, we identified immunohistochemically a new zone between zG and zF of the rat adrenal gland. The zone appeared to be devoid of any significant endocrine functions specific to adrenocortical zones, therefore, we designated the zone as “undifferentiated cell zone (zU)”. Further, BrdU (5-bromo-2′-deoxyuridine)-incorporating cells (cells in S-phase) were concentrated at the outer region and the inner region of zU, and these cells proliferated and migrated bidirectionally: toward zG centrifugally and toward zF centripetally. We proposed that cells in and around zU are stem/progenitor cells of the rat adrenal cortex, maintaining functional zonation of the adrenal cortex. The view is consistent with observations reported recently that Sonic hedgehog (Shh), an important factor in embryonic development and adult stem cell maintenance, exists in zU of the rat adrenal gland and the Shh-containing cells seem to migrate bidirectionally.  相似文献   

8.
9.
10.
We present electrical resistivity and specific heat measurements of alloys on the Rh rich side of the phase diagram of the Ce(Rh1-xPdx)2Si2 system. We compare these results with those obtained at intermediate and low Rh concentrations. The analysis of the concentration and temperature dependence of the entropy and of the scaling behaviour of C el ( T ) and ρ( T ) clearly confirm a separation of the magnetic phase diagram into two regions: the region x ≤0.3, showing a concentration independent characteristic temperature for the 4 f-electrons with T 0 ≈ 45 K, while for x > 0.3, T0 decreases to T 0 ( x = 1) ≈ 15 K. At low Pd-content, TN decreases very rapidly from T N = 36 K in pure CeRh2Si2 to T N = 18 K at x = 0.1. With higher Pd concentration TN stabilizes at T N ≈ 15 K whereas the magnitude of the anomalies in C el ( T ) and in the susceptibility around TN are further reduced and disappear at x ≈ 0.3. This differs from the behavior found on the Pd-rich side, where TN decreases continuously to zero with increasing Rh content. The pronounced differences observed between both phase boundaries and the drastic effect of doping on the Rh rich side suggest an itinerant character in CeRh2 Si2, in contrast with the localized character of CePd2Si2. Further evidence for the itinerant character of CeRh2Si2 is given by the ρ( T ) dependence observed for x ≤0.3, which scales with ρ( T ) of the prototype itinerant compound YCo2. Received 31 December 2001 / Received in final form 6 July 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: berisso@cab.cnea.gov.ar  相似文献   

11.
12.

Background  

The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected.  相似文献   

13.
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-phonon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electroweak gauge symmetry.  相似文献   

14.
15.
Functional connectivity analyses of fMRI data can provide a wealth of information on the brain functional organization and have been widely applied to the study of the human brain. More recently, these methods have been extended to preclinical species, thus providing a powerful translational tool. Here, we review methods and findings of functional connectivity studies in the rat. More specifically, we focus on correlation analysis of pharmacological MRI (phMRI) responses, an approach that has enabled mapping the patterns of connectivity underlying major neurotransmitter systems in vivo. We also review the use of novel statistical approaches based on a network representation of the functional connectivity and their application to the study of the rat brain functional architecture.  相似文献   

16.
17.
Porosomes are the universal secretory machinery in cells, where membrane-bound secretory vesicles transiently dock and fuse to release intravesicular contents to the outside of the cell during cell secretion. Studies using atomic force microscopy, electron microscopy, electron density and 3D contour mapping, provided rich nanoscale information on the structure and assembly of proteins within the neuronal porosome complex in normal brain. However it remains uncertain whether pathological conditions that alter process of neurotransmission, provoke alterations in the porosome structure also. To determine if porosomes are altered in disease states, the current study was undertaken for first time using high resolution electron microscope. One of pathologies that produce subtle alteration at the presynaptic terminals has been demonstrated to be hypokinetic stress. The central nucleus of amygdale is the brain region, where such alterations are mostly expressed. We have examined the width and depth of the neuronal porosome complex and their alterations provoked by chronic hypokinetic stress in above mentioned limbic region. Specifically, we have demonstrated that despite alterations in the presynaptic terminals and synaptic transmission provoked by this pathological condition in this region, the final step/structure in neurosecretion--the porosome--remains unaffected: the morphometric analysis of the depth and diameter of this cup-shaped structure at the presynaptic membrane point out to the heterogeneity of porosome dimensions, but with unchanged fluctuation in norm and pathology.  相似文献   

18.
The gross features of potential-energy surfaces of metallic, liquid clusters are compared with the corresponding properties of nuclei and their influence on the decay modes of excited systems is discussed. The interaction of two spherical, surface-charged droplets is compared with heavy-ion interaction potentials. Presented at the International Conference on “Atomic Nuclei and Metallic Clusters”, Prague, September 1–5, 1998.  相似文献   

19.
We combine diffuse optical and correlation spectroscopies to simultaneously measure the oxyhemoglobin and deoxyhemoglobin concentration and blood flow in an adult human brain during sensorimotor stimulation. The observations permit calculation of the relative cerebral metabolic rate of oxygen in the human brain, for the first time to our knowledge, by use of all-optical methods. The feasibility for noninvasive optical measurement of blood flow through the skull of an adult brain is thus demonstrated, and the clinical potential of this hybrid, all-optical noninvasive, methodology can now be explored.  相似文献   

20.
A parametric multiecho variant of proton spectroscopic imaging (SI) is presented using a multiecho SI sequence with uniform phase-encoding of all echoes within each echo train. The acquisition of SI data sets at different echo times (TE) increases the amount of information obtained within the same total measuring time as in standard SI measurements. The gain in information can be used: (a) to choose the most appropriate TE for each metabolite signal with respect to T2, spin coupling, or problems caused by peak overlap; (b) to measure the relaxation time T2 of metabolite signals with high spatial resolution; or (c) to improve the signal-to-noise ratio for metabolite signals with long T2 values by adding spectra calculated from consecutive echoes. The method was tested in vivo on healthy rat brain and applied to study metabolic changes in rat brain lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号