首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons.  相似文献   

2.

Background  

The Kv2.1 delayed-rectifier K+ channel regulates membrane excitability in hippocampal neurons where it targets to dynamic cell surface clusters on the soma and proximal dendrites. In the past, Kv2.1 has been assumed to be absent from the axon initial segment.  相似文献   

3.
4.
Two-neutrino-double-beta decay of 150Nd to the first 0+ excited state in 150Sm is investigated with a 400-cm3 low-background HPGe detector. Data analysis for 11320.5 h shows an excess of events at 333.9 and 406.5 keV. This allows us to estimate the half-life of the investigated process as [1.4 ?0.2 +0.4 ±0.3(syst.)]×1020 yr.  相似文献   

5.
The surface layer of an equiatomic TiNi alloy, which exhibits the shape memory effect in the martensitic state, is modified with high-dose implantation of 65-keV N+ ions (the implantation dose is varied from 1017 to 1018 ions/cm2). TiNi samples are implanted by N+, Ni+-N+, and Mo+-W+ ions at a dose of 1017–1018 cm−2 and studied by Rutherford backscattering, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction (glancing geometry), and by measuring the nanohardness and the elastic modulus. A Ni+ concentration peak is detected between two maxima in the depth profile of the N+ ion concentration. X-ray diffraction (glancing geometry) of TiNi samples implanted by Ni+ and N+ ions shows the formation of the TiNi (B2), TiN, and Ni3N phases. In the initial state, the elastic modulus of the samples is E = 56 GPa at a hardness of H = 2.13 ± 0.30 GPa (at a depth of 150 nm). After double implantation by Ni+-N+ and W+-Mo+ ions, the hardness of the TiNi samples is ∼2.78 ± 0.95 GPa at a depth of 150 nm and 4.95 ± 2.25 GPa at a depth of 50 nm; the elastic modulus is 59 GPa. Annealing of the samples at 550°C leads to an increase in the hardness to 4.44 ± 1.45 GPa and a sharp increase in the elastic modulus to 236 ± 39 GPa. A correlation between the elemental composition, microstructure, shape memory effect, and mechanical properties of the near-surface layer in TiNi is found.  相似文献   

6.
Two-neutrino double-beta decay of 150Nd to the first 0+ excited state in 150Sm is investigated with the 400-cm3 low-background HPGe detector. Preliminary data analysis for 6843 h shows an excess of events at 333.9 and 406.5 keV. If this excess is assigned to the investigated transition, then its half-life can be estimated at [1.2 ?0.3 +0.5 ±0.4(syst.)]×1020 yr.  相似文献   

7.
Two neutrino double beta decay of 150Nd to the first 0+ excited state in 150Sm is investigated with the 400 cm3 low-background HPGe detector. Data analysis for 11320.5 h shows the excess of events at 333.9 and 406.5 keV. This makes it possible to estimate the half-life of the investigated process as [1.4 ?0.2 +.04 (stat)±0.3(syst)]×1020yr.  相似文献   

8.
Careful review of all the evidence makes it clear that at least three states are important at 12.4-MeV excitation in 20Ne (four, if the broad (2+) at 12.5 MeV is included). The three states are 3 - , 0 + , and 1 + (0+). The latter, which is quite strong in 19F (3He, d) singles, is probably the state observed in coincidence with 6.13-MeV γ-rays in 19F(3He, dγ). Received: 19 August 2002 / Accepted: 28 October 2002 / Published online: 17 January 2003 RID="a" ID="a"e-mail: fortune@physics.upenn.edu Communicated by D. Guerreau  相似文献   

9.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

10.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

11.
A possibility that the 0+ state with the energy of 681.3 keV exists in the 160Dy nucleus is discussed. Calculations based on the interacting vector boson model show that in addition to the known 0+ states with the number of bosons n = 2, 5, 6, and 7 there should exist other states with the number of bosons n = 1, 3, 4, and 8 in 160Dy. It is shown that the peak at the energy 681.3 keV, which we experimentally observed in the 160Dy internal conversion electron spectrum, can be ascribed to the 0+ state with the number of bosons n = 1 or n = 8.  相似文献   

12.
We reconsider QED radiative corrections (RC) to the π0→e+e- decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for π0→e+e- decay is estimated to be 3.2%, and for η→e+e- decay it is 4.3%. PACS  13.25.Cq; 12.38.Lg; 12.38.-t  相似文献   

13.
Absolute cross-sections for electron-impact ionization and dissociation of C2H2+ and C2D2+ have been measured for electron energies ranging from the corresponding thresholds up to 2.5 keV. The animated crossed beams experiment has been used. Light as well as heavy fragment ions that are produced from the ionization and the dissociation of the target have been detected for the first time. The maximum of the cross-section for single ionization is found to be (5.56 ± 0.03)× 10-17 cm2 around 140 eV. Cross-sections for dissociation of C2 H2+ (C2D2+) to ionic products are seen to decrease for two orders of magnitude, from C2D+ (12.6 ± 0.3) × 10-17 cm2 over CH+(9.55 ± 0.06) × 10-17 cm2, C+ (6.66 ± 0.05) × 10-17 cm2, C2+ (5.36 ± 0.27) × 10-17 cm2, H+ (4.73 ± 0.29) × 10-17 cm2 and CH2+ (4.56 ± 0.27) × 10-18 cm2 to H2+ (5.68 ± 0.49) × 10-19 cm2. Absolute cross-sections and threshold energies have been compared with the scarce data available in the literature.  相似文献   

14.
Starting fromthe Skyrme interaction f_ together with the volume pairing interaction, we study the g factors for the 21,2+ excitations of 132,134,136Te. The coupling between one- and two-phonon terms in the wave functions of excited states is taken into account within the finite-rank separable approximation. Using the same set of parameters we describe the available experimental data and give the prediction for 136Te, g(21+) = ?0.18 in comparison to +0.32 in the case of 132Te.  相似文献   

15.
The observation of three events for the decay Σ+→pμ+μ- with a dimuon invariant mass of 214.3 ± 0.5 MeV by the HyperCP Collaboration implies that a new particle X may be needed to explain the observed dimuon invariant mass distribution. We show that there are regions in the SUSY-FCNC parameter space where the A0 1 in the NMSSM can be used to explain the HyperCP events without contradicting all the existing constraints from the measurements of the kaon decays, and the constraints from K0–K̄0 mixing are automatically satisfied once the constraints from kaon decays are satisfied. PACS  14.80.Cp; 12.60.Jv; 14.20.Jn  相似文献   

16.
The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/?)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p 1/2 mirror resonance in the partial 4p 1/2 and 4p 3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.  相似文献   

17.
Absolute cross sections for electron-impact dissociative excitation and ionization of CD+ 4 leading to formation of ionic products (CD2+ 4, CD+ 3, CD+ 2, CD+, C+, D+ 3, D+ 2, and D+) have been measured. The animated crossed-beams method is applied in the energy range from the reaction threshold up to 2.5 keV. Around 100 eV, the maximum cross sections are found to be (3.8±0.2) ×10-19 cm2,  cm2, (7.1±0.8) ×10-17 cm2, (9.0±0.8) × 10-17 cm2 and (3.7±0.4) ×10-17 cm2 for the heavy carbonaceous ions CD2+ 4, CD+ 3, CD+ 2, CD+ and C+ respectively. For the light fragments, D+ 3, D+ 2, and D+, the cross sections around the maximum are found to be (5.0±0.6) ×10-19 cm2, (1.7± 0.2) ×10-17 cm2 and (10.6±1.0) ×10-17 cm2, respectively. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. The analysis of ionic product velocity distributions allows determination of the kinetic energy release distributions which are seen to extend from 0 to 9 eV for heavy fragments, and up to 14 eV for light ones. The comparison of present energy thresholds and kinetic energy release with available published data gives information about states contributing to the observed processes. Individual contributions for dissociative excitation and dissociative ionization are determined for each detected product. A complete database including cross sections and energies is compiled for use in fusion application.  相似文献   

18.
We have studied the formation of the molecular ion Rb2+ and the atomic ion Rb+. These are created in laser excited rubidium vapor at the first resonance, 5s–5p and 5p-nl transitions. A theoretical model is applied to this interaction to explain the time evolution and the laser-power dependence of the population density of Rb+ and Rb2+. A set of rate equations which describe: the temporal variation of the population density of the excited states; the atomic ion density; and the electron density, were solved numerically under the experimental conditions of Barbier and Cheret. In their experiment the Rb concentration was 1×1013cm−3 and the laser power was taken to be 50–500 mW at vapor temperature = 450 K. The results showed that the main processes for producing Rb2+ are associative ionization and Hornbeck-Molnar ionization. The calculations have also showed that, the atomic ions Rb+ are formed through the Penning Ionization (PI) and photoionization processes. Moreover, a reasonable agreement between the experimental results and our calculations for the ion currents of the Rb+ and Rb2+ is obtained.   相似文献   

19.
Absolute cross-sections have been measured for electron-impact dissociative excitation and ionization of CD2+ leading to formation of CD22+, CD+, C+, D2+ and D+. The animated crossed-beams method is applied in the energy range from the reaction threshold up to 2.5 keV. The maximum total cross-sections are found to be (1.2±0.1)×10-17 cm2, (6.1±0.7)×10-17 cm2, (6.4±0.7)×10-17 cm2, (26.3±3.8)×10-19 cm2 and (14.9±1.4)×10-17 cm2 for CD22+, CD+, C+, D2+ and D+ respectively. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product, which are of significant interest in fusion plasma edge modelling and diagnostics. Conforming to the scheme recently applied in the CD4+ and in the CD3+ articles, the cross-sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic-energy-release distributions are determined for each ionic fragment at selected electron energies.  相似文献   

20.
The luminescence spectra of a KZnF3: Tl+ crystal are investigated in the energy range from 4.75 to 5.9 eV at temperatures of 10–300 K upon excitation into the A absorption band (5.7–6.3 eV). At T=300 K, the luminescence spectra exhibit an intense band with a maximum at 5.45 eV, which is attributed to single Tl+ ions substituted for K+ ions. The 5.723-eV intense narrow band observed at T<20 K is assigned to the 3Γ1u-1Γ1g zero-phonon transition, which is weakly allowed by the hyperfine interaction. The luminescence decay is studied as a function of temperature. The main characteristics of the luminescence spectra are adequately described in terms of the semiclassical theory based on the Franck-Condon principle and the Jahn-Teller effect for an excited sp configuration of the Tl+ ion with the use of the parameters obtained earlier from analyzing the absorption spectra of the system under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号