首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show in this paper how the 3MLCT luminescence of [Ru(bipy)(CN)4]2-, which is known to be highly solvent-dependent, may be varied over a much wider range than can be achieved by solvent effects, by interaction of the externally directed cyanide ligands with additional metal cations both in the solid state and in solution. A series of crystallographic studies of [Ru(bipy)(CN)4]2- salts with different metal cations Mn+ (Li+, Na+, K+, mixed Li+/K+, Cs+, and Ba2+) shows how the cyanide/Mn+ interaction varies from the conventional "end-on" with the more Lewis-acidic cations (Li+, Ba2+) to the more unusual "side-on" interaction with the softer metal cations (K+, Cs+). The solid-state luminescence intensity and lifetime of these salts is highly dependent on the nature of the cation, with Cs+ affording the weakest luminescence and Ba2+ the strongest. A series of titrations of the more soluble derivative [Ru(tBu2bipy)(CN)4]2- in MeCN with a range of metal salts showed how the cyanide/Mn+ association results in a substantial blue-shift of the 1MLCT absorptions, and 3MLCT energies, intensities, and lifetimes, with the complex varying from essentially non-luminescent in the absence of metal cation to showing strong (phi = 0.07), long-lived (1.4 micros), and high-energy (583 nm) luminescence in the presence of Ba2+. This modulation of the 3MLCT energy, over a range of about 6000 cm-1 depending on the added cation, could be used to reverse the direction of photoinduced energy transfer in a dyad containing covalently linked [Ru(bipy)3]2+ and [Ru(bipy)(CN)4]2- termini. In the absence of a metal cation, the [Ru(bipy)(CN)4]2- terminus has the lower 3MLCT energy and thereby quenches the [Ru(bipy)3]2+-based luminescence; in the presence of Ba2+ ions, the 3MLCT energy of the [Ru(bipy)(CN)4]2- terminus is raised above that of the [Ru(bipy)3]2+ terminus, resulting in energy transfer to and sensitized emission from the latter.  相似文献   

2.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

3.
Co-crystallisation of the anionic cyanometallate chromophore [Ru(bipy)(CN)4]2- with Yb(III) provides coordination polymers or oligomers containing Ru-CN-Yb bridges; in [K(H2O)4][Yb(H2O)6][Ru(bipy)(CN)4]2.5H2O Ru-->Yb energy-transfer (k > 5 x 10(6) s(-1)) results in partial quenching of the Ru-based luminescence and sensitised near-IR luminescence from the Yb(III) unit.  相似文献   

4.
Compounds [RuII(bipy)(terpy)L](PF6)2 with bipy = 2,2'-bipyridine, terpy = 2,2':6',2"-terpyridine, L = H2O, imidazole (imi), 4-methylimidazole, 2-methylimidazole, benzimidazole, 4,5-diphenylimidazole, indazole, pyrazole, 3-methylpyrazole have been synthesized and characterized by 1H NMR, ESI-MS and UV/Vis (in CH3CN and H2O). For L = H2O, imidazole, 4,5-diphenylimidazole and indazole the X-ray structures of the complexes have been determined with the crystal packing featuring only few intermolecular C-H...pi or pi-pi interactions due to the separating action of the PF6-anions. Complexes with L = imidazole and 4-methylimidazole exhibit a fluorescence emission with a maximum at 662 and 667 nm, respectively (lambdaexc= 475 nm, solvent CH3CN or H2O). The substitution of the aqua ligand in [Ru(bipy)(terpy)(H2O)]2+ in aqueous solution by imidazole to give [Ru(bipy)(terpy)(imi)]2+ is fastest at a pH of 8.5 (as followed by the increase in emission intensity). Coupling of the [Ru(bipy)(terpy)]2+ fragment to cytochrome c(Yeast iso-1) starting from the Ru-aqua complex was successful at 35 degrees C and pH 7.0 after 5 d under argon in the dark. The [Ru(bipy)(terpy)(cyt c)]-product was characterized by UV/Vis, emission and mass spectrometry. The location where the [Ru(bipy)(terpy)] complex was coupled to the protein was identified as His44 (corresponding to His39 in other numbering schemes) using digestion of the Ru-coupled protein by trypsin and analysis of the tryptic peptides by HPLC-high resolution MS.  相似文献   

5.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

6.
We report the successful use of Ru(II)(terpy)(2) (1, terpy = 2,2':6',2'-terpyridine) as a catalyst in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction. We also examine several additional Ru(II) complexes, Ru(II)(bipy)(2)(L')(2) (2, L' = 4-pyridinecarboxylic acid; bipy = 2,2'-bipyridine) and Ru(II)(bipy)(2)(L') (3, L' = 4,4'-dicarboxy-2,2'-bipy; 4, L' = N-allyl-4'-methyl-[2,2'-bipy]-4-carboxamide; 5, L' = bipy), for catalyzing the BZ reaction. While 2 is unable to trigger BZ oscillations, probably because of the rapid loss of L' in a BZ solution, the other bipyridine-based Ru(II)-complexes can catalyze the BZ reaction, although their catalytic activity is adversely affected by slow ligand substitution in a BZ solution. Nevertheless, the successfully tested Ru(II)(terpy)(2) and Ru(II)(bipy)(2)(L') catalysts may provide useful building blocks for complex functional macromolecules.  相似文献   

7.
The synthesis and characterisation of [Ru(bipy)(2)(L1)](2+) and the homodinuclear complexes [M(bipy)(2)(L1)M(bipy)(2)](4+)(where M = Ru or Os), employing the ditopic ligand, 1,4-phenylene-bis(1-pyridin-2-ylimidazo[1,5-a]pyridine)(L1), are reported. The complexes are identified by elemental analysis, UV/Vis, emission, resonance Raman, transient resonance Raman and (1)H NMR spectroscopy, mass spectrometry and electrochemistry. The X-ray structure of the complex [Ru(bipy)(2)(L1)(bipy)(2)Ru](PF(6))(4) is also reported. DFT calculations, carried out to model the electronic properties of the compounds, are in good agreement with experiment. Minimal communication between the metal centres is observed. The low level of ground state electronic interaction is rationalized in terms of the poor ability of the phenyl spacer in facilitating superexchange interactions. Using the electronic and electrochemical data a detailed picture of the electronic properties of the RuRu compound is presented.  相似文献   

8.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

9.
Condensation of cyanometalates and cluster building blocks leads to the formation of hybrid molecular cyanometalate cages. Specifically, the reaction of [Cs subset [CpCo(CN)(3)](4)[CpRu](3)] and [(cymene)(2)Ru(3)S(2)(NCMe)(3)]PF(6) produced [Cs subset [CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)][CpRu](3)](PF(6))(2), Cs subset Co(4)Ru(6)S(2)(2+). Single-crystal X-ray diffraction, NMR spectroscopy, and ESI-MS measurements show that Cs subset Co(4)Ru(6)S(2)(2+ ) consists of a Ru(4)Co(4)(CN)(12) box fused with a Ru(3)S(2) cluster via a common Ru atom. The reaction of PPN[CpCo(CN)(3)] and 0.75 equiv of [(cymene)(2)(MeCN)(3)Ru(3)S(2)](PF(6))(2) in MeCN solution produced [[CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)](3)](PF(6))(2), Co(4)Ru(9)S(6)(2+). Crystallographic analysis, together with NMR and ESI-MS measurements, shows that Co(4)Ru(9)S(6)(2+ ) consists of a Ru(3)Co(4)(CN)(9) "defect box" core, wherein each Ru is fused to a Ru(3)S(2) clusters. The analogous condensation using [CpRh(CN)(3)](-) in place of [CpCo(CN)(3)](-) produced the related cluster-cage Rh(4)Ru(9)S(6)(2+). Electrochemical analyses of both Co(4)Ru(9)S(6)(2+) and Rh(4)Ru(9)S(6)(2+) can be rationalized in the context of reduction at the cluster and the Co(III) subunits, the latter being affected by the presence of alkali metal cations.  相似文献   

10.
In this work, we investigated the UV-vis spectra of the [Ru(bipy)(2)(MPyTPP)Cl](+) (MPyTPP = 5-pyridyl-15,20,25-triphenylporphyrin) complex and its related species [Ru(bipy)(2)(py)Cl](+) and MPyTPP, by using time-dependent density functional theory and a set of functionals (B3LYP, M05, MPWB1K, and PBE0) in chloroform with the basis set 6-31++G(d,p) for nonmetal atoms and the pseudopotential LANL2DZ for Ru. Practically no geometrical changes are observed in the Ru environment when py ligand is replaced by MPyTPP. This replacement favors the electronic redistribution from bipy ligands to Ru, and from the metal to MPyTPP ligand, as indicated by NBO analysis. We found that M05 functional predicts very well the UV-vis spectra, as it shows a low deviation with respect to the experimental data, with a maximum error of 0.19 eV (11 nm). M05 theoretical electronic spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex indicates that the presence of the Ru complex does not alter Q porphyrin bands, while charge transfer bands from Ru to bipy and porphyrin ligands mixes up in the region close to the porphyrin Soret band. Theoretical analysis allows the decomposition of this broad experimental band into specific ones identifying the Soret band and new metal to ligand charge transfers toward porphyrin at 425 and 478 nm, which were not possible in none of the moieties MPyTPP and [Ru(bipy)(2)(Py)Cl](+) complex. In the UV region, the most intense intraligand band of bipy ligands becomes slightly blue-shifted both in the experimental and in the theoretical spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex compared to that in [Ru(bipy)(2)(py)Cl](+) complex. Some of the bands of [Ru(bipy)(2)(MPyTPP)Cl](+) showed in this theoretical study may have practical applications. That is the case for the band at 478 nm, with potential use in PDT, and those more energetic at 348 and 329 nm, which could help in the cleavage mechanism of DNA performed by this ruthenium complex.  相似文献   

11.
1,4,8,11-tetraazacyclotetradecane (cyclam), which is one of the most extensively investigated ligands in coordination chemistry, in its protonated forms, can play the role of host toward cyanide metal complexes. We have investigated the acid-driven adducts formed in acetonitrile-dichloromethane (1:1 v/v) solution by [Ru(bpy)(CN)4](2-) with 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1) and a dendrimer consisting of a cyclam core appended with 12 dimethoxybenzene and 16 naphthyl units (2). [Ru(bpy)(CN)4](2-), 1, and 2 exhibit characteristic absorption and emission bands, in distinct spectral regions, that are strongly affected by addition of acid. When a solution containing equimolar amounts of [Ru(bpy)(CN)4](2-) and 1 or 2 is titrated by trifluoroacetic acid, or when [Ru(bpy)(CN)4](2-) is titrated with (1.2H)2+ or (2.2H)2+, [[Ru(bpy)(CN)4](2-).(2H+).1] or [[Ru(bpy)(CN)4](2-).(2H+).2] adducts are formed in which the fluorescence of the naphthyl units is strongly quenched by very efficient energy transfer to the metal complex, as shown by the sensitized luminescence of the latter. The [[Ru(bpy)(CN)4]2-.(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] adducts can be disrupted (i) by addition of a base (1,4-diazabicyclo[2.2.2]octane), yielding the starting species [Ru(bpy)(CN)4](2-) and 1 or 2, or (ii) by further addition of triflic acid, with formation of (1.2H)2+ or (2.2H)2+ and protonated forms of [Ru(bpy)(CN)4](2-). It is shown that upon stimulation with two chemical inputs (acid and base) both [[Ru(bpy)(CN)4](2-).(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] exhibit two distinct optical outputs (a naphthalene-based and a Ru(bpy)-based emission) that behave according to an XOR and an XNOR logic, respectively.  相似文献   

12.
Four new [AuBr(2)(CN)(2)](-)-based coordination polymers, Zn(pyz)(NCMe)(2)[AuBr(2)(CN)(2)](2) (1; pyz = pyrazine), Co(pyz)[AuBr(2)(CN)(2)](2)·H(2)O (2) and [M(bipy)(2)(AuBr(2)(CN)(2))][(n)Bu(4)N][AuBr(2)(CN)(2)](2) (bipy = 4,4'-bipyridine), where M = Co (5) and Zn (6), were synthesized and three of them structurally characterized. 1 forms 1-D chains connected by pyz ligands while isostructural 5 and 6 form 3-D frameworks via [AuBr(2)(CN)(2)](-) and bipy linkers. Aqueous suspensions of 2, 5 and 6 or their precursors in situ (preferred) were heated hydrothermally to 125 °C, triggering the reductive elimination of bromine from the Au(III) centres, which yielded the [Au(CN)(2)](-)-based coordination polymers M(pyz)[Au(CN)(2)](2), where M = Zn (3) or Co (4) and Zn(bipy)[Au(CN)(2)][Au{Br(0.68)(CN)(0.32)}CN] (7), or a mixture of cyanoaurate(I)-containing products in the case of 5 and 6. The structural characterization of 3 revealed a [Au(CN)(2)](-)/pyz-based framework similar to previously reported Cu(pyz)[Au(CN)(2)](2), whereas 7 formed an intricate network consisting of individual 2-D networks held together by AuAu interactions and featuring the rare [AuBrCN](-) unit. The kinetics of the thermally-induced reductive elimination of Br(2) from K[AuBr(2)(CN)(2)] in 1-BuOH yielded a t(?) of approx. 10 min to 4 h from 98 to 68 °C, and activation parameters of ΔH(?) = 131(15) kJ mol(-1) and ΔS(?) = 14.97(4) kJ K(-1)mol(-1), indicating that the elimination of the halogen provides the highest barrier to activation.  相似文献   

13.
The preparation, X-ray crystallography and magnetic investigation of the compounds PPh4[Cr(bipy)(CN)4].2 CH3CN.H2O (1) (mononuclear), [[Cr(bipy)(CN)4]2Mn-(H2O)4].4H2O (2) (trinuclear), [[Cr(bipy)(CN)4]2Mn(H2O)2] (3) (chain) and [[Cr(bipy)(CN)4]2Mn(H2O)].H2O.CH3CN (4) (double chain) [bipy=2,2'-bipyridine; PPh4 (+)=tetraphenylphosphonium] are described herein. The [Cr(bipy)(CN)4]- unit act either as a monodentate (2) or bis-monodentate (3) ligand toward the manganese atom through one (2) or two (3) of its four cyanide groups. The manganese atom is six-coordinate with two (2) or four (3) cyanide nitrogens and four (2) or two (3) water molecules building a distorted octahedral environment. In 4, two chains of 3 are pillared through interchain Mn-N-C-Cr links which replace one of the two trans-coordinated water molecules at the manganese atom to afford a double chain structure where bis- and tris-monodenate coordination modes of [Cr(bipy)(CN)4]- coexist. The magnetic properties of 1-4 were investigated in the temperature range 1.9-300 K. A Curie law behaviour for a magnetically isolated spin quartet is observed for 1. A significant antiferromagnetic interaction between CrIII and MnII through the single cyanide bridge [J=-6.2 cm(-1), the Hamiltonian being defined as H=-J(SCr1.SMn+SCr2.SMn] occurs in 2 leading to a low-lying spin doublet which is fully populated at T <5 K. A metamagnetic behaviour is observed for 3 and 4 [the values of the critical field Hc being ca. 3000 (3) and 1500 Oe (4)] which is associated to the occurrence of weak interchain antiferromagnetic interactions between ferrimagnetic Cr2III MnII chains. The analysis of the exchange pathways in 2-4 through DFT type calculations together with the magnetic bevaviour simulation using the quantum Monte Carlo methodology provided a good understanding of their magnetic properties.  相似文献   

14.
Gradient-corrected and hybrid variants of density-functional theory are used to compute the geometries and 99Ru chemical shifts of RuO4, [RuCp2], [K4Ru(CN)6], [Ru3(CO)12], [Ru(CO)3X3]- (X=Cl, I), [Ru(CO)2Cl4]2-, [Ru(bipy)3]2+, and [Ru(CO)2(iPr-DAB)(X)(Y)] [XY= Cl2, I2, MeCl, MeI, or (SnMe3)2]. For this set of compounds, substituent effects on delta(99Ru) are somewhat underestimated with the BPW91 pure density functional but are described well by the B3LYP hybrid functional, which can also be used to reproduce empirical trends in electric field gradients (EFGs) at the Ru nucleus qualitatively. In the [Ru(CO)2(iPr-DAB)XY] series, trends in the computed EFGs parallel those in the observed 99Ru NMR linewidths, in accordance with the quadrupolar relaxation mechanism expected for this nucleus. For this series of compounds, the use of X-ray-derived geometries affords a worse correlation between calculated EFGs and experimental linewidths than does the use of optimized geometries.  相似文献   

15.
The neutral, monocationic, and dicationic linear trinuclear ruthenium compounds [Ru(3)(dpa)(4)(CN)(2)], [Ru(3)(dpa)(4)(CN)(2)][BF(4)], [Ru(3)(dpa)(4)Cl(2)][BF(4)], and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) (dpa=the anion of dipyridylamine) have been synthesized and characterized by various spectroscopic techniques. Cyclic voltammetric and spectroelectrochemical studies on the neutral and oxidized compounds are reported. These compounds undergo three successive metal-centered one-electron-transfer processes. X-ray structural studies reveal a symmetrical Ru(3) unit for these compounds. While the metal--metal bond lengths change only slightly, the metal--axial ligand lengths exhibit a significant decrease upon oxidation of the neutral complex. The electronic configuration of the Ru(3) unit changes as the axial chloride ligands are replaced by the stronger "pi-acid" cyanide axial ligands. Magnetic measurements and (1)H NMR spectra indicate that [Ru(3)(dpa)(4)Cl(2)] and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) are in a spin state of S=0 and [Ru(3)(dpa)(4)Cl(2)][BF(4)], [Ru(3)(dpa)(4)(CN)(2)], and [Ru(3)(dpa)(4)(CN)(2)][BF(4)] are in spin states of S=1/2, 1, and 3/2, respectively. These results are consistent with molecular orbital (MO) calculations.  相似文献   

16.
The synthesis of the new complexes of 1-phenylacetyl-4-phenyl-3-thiosemicarbazide (H2papts) and 1-phenoxyacetyl-4-phenyl-3-thiosemicarbazide (H2Pxapts); [Ru(HL)2(H2O)2], [Rh(HL)3], [Ag(H2L)(H2O)2](NO3), trans-[UO2(HL)(bipy)(AcO)(H2O)2] (H2L = H2papts, H2pxapts; bipy = 2,2'-bipyridyl), [Ag(H2papts)(bipy)]+ and [Pd-(Hpapts)(bipy)]+ is described. Characterization of these complexes by IR, electronic and 1H-NMR spectra, conductometric titrations and thermal analysis is included. The complexes [Ru(HL)2(H2O)2] were found to be efficient catalysts for the oxidation of primary alcohols to aldehydes and acids, secondary alcohols to ketones and aryl halides to aldehydes and acids in the presence of NaIO4 as co-oxidant.  相似文献   

17.
The electronic absorption and circular dichroism (CD) spectra of the complexes produced by the one, two, and three electron reduction of Delta-[Ru(bipy)(3)](2+) and Delta-[Os(bipy)(3)](2+) are reported. The CD spectra give unequivocal proof that the added electrons are localized on individual bipiridine ligands and thus that the complexes are correctly formulated [M(bipy)(2)(bipy(-))](+), [M(bipy)(bipy(-))(2)](0), and [M(bipy(-))(3)](-). The absorption spectra of the triply reduced species [M(bipy(-))(3)](-) (M = Ru, Os) are compared to those of the Fe(II) and Ir(III) analogs. The luminescence spectra of the two triply reduced complexes [Ru(bipy(-))(3)](-) and [Os(bipy(-))(3)](-). are also presented. The MLCT luminescence found in the parent complexes is completely quenched and is replaced by a weak luminescence attributed to the pi(10) --> pi(7) transition of the (coordinated) [bipy](-) ion.  相似文献   

18.
Reaction of [Fe(III)(bipy)(CN)4]- with fully solvated M(II) cations [M = Co (1) and Mn (2)] produces the isostructural bis double zigzag chains [[Fe(III)(bipy)(CN)4]2M(II)(H2O)] x MeCN x (1/2)H2O; 1 exhibits intrachain ferromagnetic and interchain antiferromagnetic couplings, slow magnetic relaxation and hysteresis effects.  相似文献   

19.
Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.  相似文献   

20.
The reaction of Ru2(S2C3H6)(CO)6 (1) with 2 equiv of Et4NCN yielded (Et4N)2[Ru2(S2C3H6)(CN)2(CO)4], (Et4N)2[3], which was shown crystallographically to consist of a face-sharing bioctahedron with the cyanide ligands in the axial positions, trans to the Ru-Ru bond. Competition experiments showed that 1 underwent cyanation >100x more rapidly than the analogous Fe2(S2C3H6)(CO)6. Furthermore, Ru2(S2C3H6)(CO)6 underwent dicyanation faster than [Ru2(S2C3H6)(CN)(CO)5]-, implicating a highly electrophilic intermediate [Ru2(S2C3H6)(mu-CO)(CN)(CO)5]-. Ru2(S2C3H6)(CO)6 (1) is noticeably more basic than the diiron compound, as demonstrated by the generation of [Ru2(S2C3H6)(mu-H)(CO)6]+, [1H]+. In contrast to 1, the complex [1H]+ is unstable in MeCN solution and converts to [Ru2(S2C3H6)(mu-H)(CO)5(MeCN)]+. (Et4N)2[3] was shown to protonate with HOAc (pKa = 22.3, MeCN) and, slowly, with MeOH and H2O. Dicyanide [3]2- is stable toward excess acid, unlike the diiron complex; it slowly forms the coordination polymer [Ru2(S2C3H6)(mu-H)(CN)(CNH)(CO)4]n, which can be deprotonated with Et3N to regenerate [H3]-. Electrochemical experiments demonstrate that [3H]- catalyzes proton reduction at -1.8 V vs Ag/AgCl. In contrast to [3]2-, the CO ligands in [3H]- undergo displacement. For example, PMe3 and [3H]- react to produce [Ru2(S2C3H6)(mu-H)(CN)2(CO)3(PMe3)]-. Oxidation of (Et4N)2[3] with 1 equiv of Cp2Fe+ gave a mixture of [Ru2(S2C3H6)(mu-CO)(CN)3(CO)3]- and [Ru2(S2C3H6)(CN)(CO)5]-, via a proposed [Ru2]2(mu-CN) intermediate. Overall, the ruthenium analogues of the diiron dithiolates exhibit reactivity highly reminiscent of the diiron species, but the products are more robust and the catalytic properties appear to be less promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号