首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A novel and efficient procedure for the synthesis of new 7‐pyrimidinylpyrimido[4,5‐d]pyrimidinone derivatives was elaborated via the base‐promoted cyclodimerization reaction of 5‐[(dimethylamino)methylidene]‐6‐iminopyrimidine‐2,4(1H,3H)‐dione hydrochlorides. In an analogous manner, a 2‐thioxo analog was prepared starting with the corresponding 2‐thioxopyrimidin‐4‐one.  相似文献   

2.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

3.
The electrochemical oxidation of 3,4‐dihydroxy benzoic acid ( 1 ) has been studied in the presence of 6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one ( 2 ) in aqueous solution. The oxidation mechanism of 1 and its reaction in the presence of 2 was offered. It was confirmed that 1 is converted to 7H‐thiazolo[3,2‐b]‐1,2,4‐triazin‐7‐one derivative 5 through Michael addition reaction of 2 to anodically generated o‐benzoquinone. The results of the research were used for electrochemical synthesis of 5 in an undivided cell in good yield and purity.  相似文献   

4.
From the carbolithiation of 1‐(cyclopenta‐2,4‐dien‐1‐ylidene)‐N,N‐dimethylmethanamine (=6‐(dimethylamino)fulvene; 3 ) and different lithiated azaindoles 2 (1‐methyl‐7‐azaindol‐2‐yl, 1‐[(diethylamino)methyl]‐7‐azaindol‐2‐yl, and 1‐(methoxymethyl)‐7‐azaindol‐2‐yl), the corresponding lithium cyclopentadienide intermediates 4a – 4c were formed (7‐azaindole=1H‐pyrrolo[2,3‐b]pyridine). The latter underwent a transmetallation reaction with TiCl4 resulting in the (dimethylamino)‐functionalised ‘titanocenes’ 5a – 5c . When the ‘titanocenes’ 5a – 5c were tested against LLC‐PK cells, the IC50 values obtained were of 8.8, 12, and 87 μM , respectively. The most cytotoxic ‘titanocene’, 5a , with an IC50 value of 8.8 μM is nearly as cytotoxic as cis‐platin, which showed an IC50 value of 3.3 μM when tested on the epithelial pig kidney LLC‐PK cell line, and ca. 200 times better than ‘titanocene dichloride’ itself.  相似文献   

5.
In this study, (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid hydrazide ( 5 ) was synthesized by the condensation of methyl (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylate ( 4 ) with NH2NH2⋅H2O. The (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid 2‐[(arylamino)carbonyl]hydrazides 6a – 6q were prepared by the reaction of 5 with corresponding substituted aryl isocyanates, and the N‐{5‐[(5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐yl]‐1,3,4‐oxadiazol‐2‐yl}arenamines 7a – 7q were obtained via the cyclization reaction of 6a – 6q in the presence of POCl3. The synthesized compounds have a rigid morphine structure, including the 6,14‐endo‐etheno bridge and the 5‐(arylamino)‐1,3,4‐oxadiazol‐2‐yl residue at C(7) adopting the (S)‐configuration (7α). The structures of the compounds were confirmed by high‐resolution mass spectrometry (HR‐MS) and various spectroscopic methods such as FT‐IR, 1H‐NMR, 13C‐NMR, APT, and 2D‐NMR (HETCOR, COSY, INADEQUATE).  相似文献   

6.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

7.
Dialkylammonium dicyano(7‐methyl‐6‐oxo‐6H‐dibenzo[b,d]pyran‐9‐yl)methanides 4a – 4j are obtained in good yields via a simple reaction between 3‐acetylcoumarins (=3‐acetyl‐2H‐1‐benzopyran‐2‐ones) 1 and malononitrile ( 2 ) in EtOH (Table 1). In this reaction, a charge‐separated zwitterionic salt is formed.  相似文献   

8.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ( 1 ) ([P] when coordinated to a metal) stabilizes platinum(II) ( 2 ) and palladium(II) dihalides ( 3 ) as [P]MX2 with X = Cl ( a ), Br ( b ) and I ( c ). The phosphane coordinates to the metal as a chelate ligand via both phosphorus and the central η2‐C=C bond of one of the cyclohepta‐2, 4, 6‐trienyl rings. The complexes were prepared by various routes, mainly by the reaction of (cod)MCl2 (cod = cycloocta‐1, 5‐diene) with 1 to give the chlorides 2a and 3a , which then could be converted into the bromides 2b , 3b or the iodides 2c , 3c by reaction with NaBr or NaI, respectively. The molecular structure of 2c was determined by X‐ray analysis. Treatment of 2a and 3a with sodium or potassium salts of several pseudohalides afforded the complexes [P]MX2 2d (NCO/NCO), 2e1 (NCS/SCN), 2e1' (SCN/NCS), 2f2 (SeCN/SeCN), 3f1 (NCSe/SeCN), 2g and 3g (X = N3). Attempts failed to synthesize the cyanides 2h and 3h by the same route. By using an excess of trimethylsilyl cyanide in the reaction with 2a in THF solution, the complex trans‐{[(C7H7)3P]2Pt(CN)2} ( 4h ) was obtained instead of 2h . The analogous complexes trans‐{[(C7H7)3P]2MX2} with M = Pt ( 4 ) and Pd ( 5 ) for X = Cl ( a ), Br ( b ), I ( c ) could be prepared from the reaction of the corresponding tetrahalogenometallates and 1 (in the case of 5c from PdI2 and 1 ). In contrast to 4h , the complexes 4a‐c and 5a‐c were found to be labile in solution with respect to partial loss of the phosphane 1 and rearrangement into 2a‐c and 3a‐c , respectively. All compounds were characterized by IR spectroscopy and by multinuclear magnetic resonance spectroscopy (1H, 13C, 31P, 77Se and 195Pt NMR). The ligand [P] in 2 and 3 is fluxional with regard to coordination of the C7H7 rings to the metal.  相似文献   

9.
The reactions of 5‐benzylidene‐3‐phenylrhodanine ( 2 ; rhodanine=2‐thioxo‐1,3‐thiazolidin‐4‐one) with diazomethane ( 7a ) and phenyldiazomethane ( 7b ) occurred chemoselectively at the exocyclic C?C bond to give the spirocyclopropane derivatives 9 and, in the case of 7a , also the C‐methylated products 8 (Scheme 1). In contrast, diphenyldiazomethane ( 7c ) reacted exclusively with the C?S group leading to the 2‐(diphenylmethylidene)‐1,3‐thiazolidine 11 via [2+3] cycloaddition and a ‘two‐fold extrusion reaction’. Treatment of 8 or 9b with an excess of 7a in refluxing CH2Cl2 and in THF at room temperature in the presence of [Rh2(OAc)4], respectively, led to the 1,3‐thiazolidine‐2,4‐diones 15 and 20 , respectively, i.e., the products of the hydrolysis of the intermediate thiocarbonyl ylide. On the other hand, the reactions with 7b and 7c in boiling toluene yielded the corresponding 2‐methylidene derivatives 16, 21a , and 21b . Finally, the reaction of 11 with 7a occurred exclusively at the electron‐poor C?C bond, which is conjugated with the C?O group. In addition to the spirocyclopropane 23 , the C‐methylated 22 was formed as a minor product. The structures of the products (Z)‐ 8, 9a, 9b, 11 , and 23 were established by X‐ray crystallography.  相似文献   

10.
The Layer Structure of Cyameluric Chloride C6N7Cl3 A solid state reaction of cyanuric chloride (trichloro‐s‐triazine C3N3Cl3) with sodium dicyanamide (NaN(CN)2) yielded some yellow, plate‐like crystals of cyameluric chloride (trichloro‐s‐heptazine C6N7Cl3). The crystal structure was determined by single crystal X‐ray diffraction at 220 K and was solved in the monoclinic space group C 2/c (no. 15) with Z = 24, a = 2319.4(4) pm, b = 1348.8(1) pm, c = 2063.4(3) pm, β = 118.38(2)° and V = 5.680(1) nm3. In the structure, the molecules of C6N7Cl3 are forming layers parallel to the ab‐plane, which are separated from each other by a gap of approximately 300 pm. In each of these layers, the molecules seem to be arranged around pseudo‐threefold axes, showing an almost trigonal structure pattern.  相似文献   

11.
Black crystals of W2Cl7(CCl) were obtained from the reaction of WCl6 and As in CCl4 at 250 °C under solvothermal conditions. The crystal structure (orthorhombic, space group Pbca, a = 1196(1), b = 1215.6(7), c = 1584(1) pm, Z = 8) is built of infinite zig‐zag chains of dinuclear complexes connected via bridging Cl atoms. The individual complexes are face‐sharing double octahedra concatenated via bridging Cl ligands. Each W atom is in a distorted octahedral coordination environment of five Cl atoms an the carbon atom of the μ2 bridging chloromethylidyne ligand leading to the formula [{Cl2W(μ‐CCl)(μ2‐Cl)2WCl2}(μ‐Cl)]n. The short W‐W distance of 256 pm indicates a multiple W‐W bond, the W‐C bonds of 195 pm are in the typical range for μ2‐alkylidyne ligands, the C‐Cl bond of 167 pm is consistent with a sp1 hybridisation on the carbon atom.  相似文献   

12.
The photoinduced reaction of a mixture of (Z)‐α‐cyano‐β‐bromomethylcinnamide (1) and (E)‐α‐cyano‐β‐bromomethylcinnamide (2) with 1‐benzyl‐1, 4‐dihydronicotinamide produces a mixture of the (E)‐ and (Z)‐ isomers of α‐cyano‐β‐methylcinnamide (3 and 4). Using spin‐trapping technique for monitoring reactive intermediate, it is shown that the reaction proceeds via electron transfer‐debromination‐H abstraction mechanism. The thermal reaction of the same substrate with BNAH at 60°C in the dark gives three products: the (E)‐ and (Z)‐isomers of α‐cyano‐β‐methylcinnamide and a dehydrodimeric product; 2, 7‐dicyano‐3, 6‐diphenylocta‐2, 4, 6‐trien‐1, 8‐dioic amide (7). Based on product analysis, scavenger experiment and cyclic voltammetry, an electron transfer‐debromination‐disproportionation mechanism is proposed.  相似文献   

13.
Two isostructural diarsenates, SrZnAs2O7 (strontium zinc diarsenate), (I), and BaCuAs2O7 [barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction. The three‐dimensional open‐framework crystal structure consists of corner‐sharing M2O5 (M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7 group shares its five corners with five different M2O5 square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine‐coordinated M1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of the M1O9, M2O5 and As2O7 groups of known isostructural diarsenates, adopting the general formula M1IIM2IIAs2O7 (M1II = Sr, Ba, Pb; M2II = Mg, Co, Cu, Zn) and crystallizing in the space group P21/n, are presented and discussed.  相似文献   

14.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

15.
A four‐component reaction for the synthesis of 1,2‐dihydroisoquinoline derivatives is described. The Huisgen 1,4‐dipolar intermediate, which is produced from isoquinoline and an electron‐deficient acetylene compound 1 , reacts with H2O in the presence of diketene to produce 1,2‐dihydroisoquinoline derivatives 2 (Scheme 1). In addition, reaction of isoquinoline, dibenzoylacetylene (=1,4‐diphenylbut‐2‐yne‐1,4‐dione), and diketene in the presence of H2O leads to pyrroloisoquinoline derivative 7 . The structures of the compounds 2a – f and 7 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, EI‐MS) and by elemental analyses. A plausible mechanism for the reaction is proposed (Schemes 2 and 3).  相似文献   

16.
New dinuclear Rh(I)–Phosphines of the types [Rh(µ‐azi)(CO)(L)]2 ( 1,3 – 7 ) and [Rh(µ‐azi)(L)]2 ( 8 ) with pendant polar groups, and a chealated mononuclear compound [Rh(azi‐H)(CO)(L)] ( 2 ) (where azi = 7‐azaindolate, L = polar phosphine) were isolated from the reaction of [Rh(µ‐Cl)(CO)2]2 with 7‐azaindolate followed by some polar mono‐ and bis‐phosphines ( L 1 – L 8 ). A relationship between Δδ31P‐NMR and ν(CO) values was considered to define the impact of polar‐groups on σ‐donor properties of the phosphines. These compounds were evaluated as catalyst precursors in the hydroformylation of 1‐hexene and 1‐dodecene both in mono‐ and biphasic aqueous organic systems. While the biphasic hydroformylations (water + toluene) gave exclusively the aldehydes, the monophasic one (aqueous ethanol) showed propensity to form both aldehydes and alcohols. The influence of bimetallic cooperative effects, and σ‐donor and hydrophilic properties of the phosphines with pendant polar‐groups in enhancing the yields and selectivity of hydroformylation products was emphasized. In addition, when strong σ‐donor phosphine was used, the π‐acceptor nature of pyridine ring of 7‐azaindolate spacer was found to be a considerable factor in facilitating the facile cleavage of CO group during hydroformylation and in supplementing the cooperative effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Six novel poly(amide‐imide)s PAIs 5a‐f were synthesized through the direct polycondensation reaction of six chiral N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f with bis(3‐amino phenyl) phenyl phosphine oxide 4 in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), triphenyl phosphite (TPP), calcium chloride (CaCl2) and pyridine. The polymerization reaction produced a series of flame‐retardant and thermally stable poly(amide‐imide)s 5a‐f with high yield and good inherent viscosity of 0.39–0.83 dLg?1. The resultant polymers were fully characterized by means of FTIR, 1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Thermal properties and flame retardant behavior of the PAIs 5a‐f were investigated using thermal gravimetric analysis (TGA and DTG) and limited oxygen index (LOI). Data obtained by thermal analysis (TGA and DTG) revealed that these polymers show good thermal stability. Furthermore, high char yields in TGA and good LOI values indicated that resultant polymers exhibited good flame retardant properties. N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f were prepared in quantitative yields by the condensation reaction of bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride 1 with L‐alanine 2a , L‐valine 2b , L‐leucine 2c , L‐isoleucine 2d , L‐phenyl alanine 2e and L‐2‐aminobutyric acid 2f in acetic acid solution. These polymers can be potentially utilized in flame retardant thermoplastic materials.  相似文献   

18.
用1,1-二氨基-2,2-二硝基乙烯(FOX-7)和盐酸胍在KOH水溶液中合成了[HN=C(NH2)2]+(FOX-7)---G(FOX-7),并培养出淡黄色单晶。化合物属正交晶系,空间群为P-bca,晶体结构参数为: a=1.0428(3)nm, b=0.73099(18)nm,c=2.2253(5)nm,V=1.6963(7) nm3,Dc=1.542 g/cm3,μ=0.333 mm-1,F(000)=864, Z=8。在分析分子晶体结构的基础上,采用B3LYP、HF和MP2三种方法在6-31+G(d)基组水平上对标题化合物进行几何全优化,并对其成键情况、原子电荷分布、分子轨道能量进行了分析。  相似文献   

19.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

20.
The unconventional (5S,7R,8S,9R,10S)‐configurated (?)‐7‐(acetyloxy)‐12,12‐dichloro‐8‐hydroxy‐13,14,15,16‐tetranorlabdan‐11‐one ( 2 ) was synthesized via the HCl‐promoted hydrolysis of (7α)‐7,8‐(isopropylidenedioxy)‐14,15‐dinorlabdan‐11,13‐dione ( 5 ). Possible mechanistic pathways of the reaction are considered. Crystal and molecular structures of the isolated compound 2 were determined by single‐crystal X‐ray structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号