首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectroscopic dynamics must result from motions of the solvent. In this paper, we use ultrafast transient absorption spectroscopy to investigate the solvation dynamics of newly created sodium atoms that are formed following the charge transfer to solvent (CTTS) ejection of an electron from sodium anions (sodide) in liquid tetrahydrofuran (THF). Because the absorption spectra of the sodide reactant, the sodium atom, and the solvated electron products overlap, we first examined the dynamics of the ejected CTTS electron in the infrared to build a detailed model of the CTTS process that allowed us to subtract the spectroscopic contributions of the sodide bleach and the solvated electron and cleanly reveal the spectroscopy of the solvated atom. We find that the neutral sodium species created following CTTS excitation of sodide initially absorbs near 590 nm, the position of the gas-phase sodium D-line, suggesting that it only weakly interacts with the surrounding solvent. We then see a fast solvation process that causes a red-shift of the sodium atom's spectrum in approximately 230 fs, a time scale that matches well with the results of MD simulations of solvation dynamics in liquid THF. After the fast solvation is complete, the neutral sodium atoms undergo a chemical reaction that takes place in approximately 740 fs, as indicated by the observation of an isosbestic point and the creation of a species with a new spectrum. The spectrum of the species created after the reaction then red-shifts on a approximately 10-ps time scale to become the equilibrium spectrum of the THF-solvated sodium atom, which is known from radiation chemistry experiments to absorb near approximately 900 nm. There has been considerable debate as to whether this 900-nm absorbing species is better thought of as a solvated atom or a sodium cation:solvated electron contact pair, (Na+,e-). The fact that we observe the initially created neutral Na atom undergoing a chemical reaction to ultimately become the 900-nm absorbing species suggests that it is better assigned as (Na+,e-). The approximately 10-ps solvation time we observe for this species is an order of magnitude slower than any other solvation process previously observed in liquid THF, suggesting that this species interacts differently with the solvent than the large molecules that are typically used as solvation probes. Together, all of the results allow us to build the most detailed picture to date of the CTTS process of Na- in THF as well as to directly observe the solvation dynamics associated with single sodium atoms in solution.  相似文献   

2.
The solvated electron production by reaction between the H atom and the hydroxide anion was studied using Density Functional Theory based first-principles molecular dynamics. The simulation reveals a complex mechanism, controlled by proton transfers in the coordination sphere of the hydroxide and by the diffusion of the H atom in its solvent cavity. We formulate the hypothesis, based on a coupling between classical and first-principles molecular dynamics, that these two processes give rise to a lag time for the reaction that would explain the H atom extremely small reactivity compared to other radical species. Furthermore, the reaction observed gives an original insight in excess electron solvation.  相似文献   

3.
In water-rich mixtures, the addition of oxydipropionitrile (ODPN) does not alter the solvation of halide ions, they are preferentially solvated by water. In ODPN-rich media, the addition of water to the poor solvent increases the solvation of halide ions by forming hydrogen bonds with water molecules. The iodine molecule is solvated mainly by ODPN and addition of water to the solvent has little influence. The triiodide complex, a highly polarisable species behaves in the same way as the iodine molecule. On demixing, the halide ions are solvated in a similar way in the water-rich phase and very differently in the solvent-rich phase. Advantage is taken of this property to extract cationic complexes quantitatively from their aqueous solutions with ODPN.  相似文献   

4.
The solvation effect in the thermal decomposition of a radical initiator (AIBN) in monomer–solvent mixtures is discussed. Equations were derived which comprise the initiator decomposition constant as a function of the monomer mole fraction for chosen types of solvation. In addition, equations were deduced presenting the concentrations and partial relative decomposition rates for the solvated initiator species as a function of the monomer mole fraction. The equations obtained were compared to the experimental literature data and possible dependences of decomposition constants on monomer concentration were simulated for various solvated species. The simulated relationships were found to be straight lines, curves of saturated type (possessing a plateau), S-shaped curves, and maximum or minimum curves. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
This study further extends the scope of a previous paper [Y. Ferro and A. Allouche, J. Chem. Phys. 118, 10461 (2003)] on the reactivity of atomic Na with water to some other highly polar molecules known for their solvation properties connected to efficient hydrogen bonding. The solvation mechanisms of ammonia and methanol are compared to the hydration mechanism. It is shown that in the case of ammonia, the stability of the solvated system is only ensured by electrostatic interactions, whereas the methanol action is more similar to that of water. More specific attention is given to the solvation process of the valence 3s Na electron. The consequences on the chemical reactivity are analyzed: Whereas ammonia is nonreactive when interacting with atomic sodium, two chemical reactions are proposed for methanol. The first process is dehydrogenation and yields methoxy species and hydrogen. The other one is dehydration and the final products are methoxy species, but also methyl radical and water. The respective roles of electron solvation and hydrogen bonds network are analyzed in detail in view of the density of states of the reactive systems.  相似文献   

6.
The relative stabilities of glycine tautomers involved in the intramolecular proton transfer are investigated computationally by considering glycine-water complexes containing up to five water molecules. The supermolecule results are compared with continuum calculations. Specific solute-solvent interactions and solvent induced changes in the solute wave function are considered using the natural bond orbitals (NBO) method. The stabilization of the zwitterion upon solvation is explained by the changes in the wave functions localized on the forming and breaking bonds as well as by the different interaction energies in the zwitterionic and neutral clusters. Only the neutral species exist in mono- and dihydrated clusters and in the gas phase. In the smaller clusters, zwitterions are mainly stabilized by conformational effects, whereas in larger clusters, in particular when glycine is solvated on both sides of its heavy atom backbone, polarization effects dominate the stability of a given tautomer. Generally, the strength of the solute-solvent interactions is governed by the intermolecular charge transfer interactions. As the solvation progresses, the hypothetical gaseous zwitterion is better solvated than the gaseous neutral, making zwitterion to neutral tautomerization progressively less exothermic for clusters containing up to three water molecules, and endothermic for larger clusters. The neutral isomer does not exist for some solvent arrangements with five water molecules. Only solvent arrangements in which water molecules do not interact with the reactive proton are considered. Hence, the experimentally observed double well potential energy surface may be due to such an interaction or to a different reaction mechanism.  相似文献   

7.
We present a benchmark study of a combined multipole spin-spin coupling constant (SSCC) polarizability/reaction field (MJP/RF) approach to the calculation of both specific and bulk solvation effects on SSCCs of solvated molecules. The MJP/RF scheme is defined by an expansion of the SSCCs of the solvated molecule in terms of coupling constant dipole and quadrupole polarizabilities and hyperpolarizabilities derived from single molecule ab initio calculations. The solvent electric field and electric field gradient are calculated based on data derived from molecular dynamics (MD) simulations thereby accounting for solute-solvent dynamical effects. The MJP/RF method is benchmarked against polarizable QM/MM calculations for the one-bond N-H coupling constant in N-methylacetamide. The best agreement between the MJP/RF and QM/MM approaches is found by truncating the electric field expansion in the MJP/RF approach at the linear electric field level. In addition, we investigate the sensitivity of the results due to the choice of one-electron basis set in the ab initio calculations of the coupling constant (hyper-)polarizabilities and find that they are affected by the basis set in a way similar to the coupling constants themselves.  相似文献   

8.
Molecular dynamics simulations are used to examine the local solvation structure of single octane and perfluorooctane molecules in liquid water, methanol, acetonitrile, and aqueous mixtures of methanol and acetonitrile. The motivation is to obtain baseline information about the solvation of perfluorooctane by liquids used as the mobile phase in liquid chromatography and how it differs from the solvation of octane. While octane is uniformly solvated by both water and the second component, perfluorooctane is solvated by methanol and acetonitrile with the exclusion of water from the first solvation layer when the solvent is a mixture.  相似文献   

9.
The solvation of fluoride and chloride anions (F(-) and Cl(-), respectively) by water has been studied using effective fragment potentials (EFPs) for the water molecules and ab initio quantum mechanics for the anions. In particular, the number of water molecules required to fully surround each anion has been investigated. Monte Carlo calculations have been used in an attempt to find the solvated system X(-)(H(2)O)(n) (X = F, Cl) with the lowest energy for each value of n. It is predicted that 18 water molecules are required to form a complete solvation shell around a Cl(-) anion, where "complete solvation" is interpreted as an ion that is completely surrounded by solvent molecules. Although fewer water molecules may fully solvate the Cl(-) anion, such structures are higher in energy than partially solvated molecules, up to n > or = 18. Calculations on the F(-) anion suggest that 15 water molecules are required for a complete solvation shell. The EFP predictions are in good agreement with the relative energies predicted by ab initio energy calculations at the EFP geometries.  相似文献   

10.
The optical absorption spectra of alkali metals in ethylenediamine have provided evidence for a third oxidation state, -1, of all of the alkali metals heavier than lithium. Experimentally determined NMR parameters have supported this interpretation, further indicating that whereas Na(-) is a genuine metal anion, the interaction of the alkali anion with the medium becomes progressively stronger for the larger metals. Herein, first-principles computations based upon density functional theory are carried out on various species which may be present in solutions composed of alkali metals and ethylenediamine. The energies of a number of hypothetical reactions computed with a continuum solvation model indicate that neither free metal anions, M(-), nor solvated electrons are the most stable species. Instead, [Li(en)(3)](2) and [M(en)(3)(δ+)·M(δ-)] (M = Na, K, Rb, Cs) are predicted to have enhanced stability. The M(en)(3) complexes can be viewed as superalkalis or expanded alkalis, ones in which the valence electron density is pulled out to a greater extent than in the alkali metals alone. The computed optical absorption spectra and NMR parameters of the [Li(en)(3)](2) superalkali dimer and the [M(en)(3)(δ+)·M(δ-)] superalkali-alkali mixed dimers are in good agreement with the aforementioned experimental results, providing further evidence that these may be the dominant species in solution. The latter can also be thought of as an ion pair formed from an alkali metal anion (M(-)) and solvated cation (M(en)(3)(+)).  相似文献   

11.
We developed a technique to decrease memory requirements when solving the integral equations of three‐dimensional (3D) molecular theory of solvation, a.k.a. 3D reference interaction site model (3D‐RISM), using the modified direct inversion in the iterative subspace (MDIIS) numerical method of generalized minimal residual type. The latter provides robust convergence, in particular, for charged systems and electrolyte solutions with strong associative effects for which damped iterations do not converge. The MDIIS solver (typically, with 2 × 10 iterative vectors of argument and residual for fast convergence) treats the solute excluded volume (core), while handling the solvation shells in the 3D box with two vectors coupled with MDIIS iteratively and incorporating the electrostatic asymptotics outside the box analytically. For solvated systems from small to large macromolecules and solid–liquid interfaces, this results in 6‐ to 16‐fold memory reduction and corresponding CPU load decrease in MDIIS. We illustrated the new technique on solvated systems of chemical and biomolecular relevance with different dimensionality, both in ambient water and aqueous electrolyte solution, by solving the 3D‐RISM equations with the Kovalenko–Hirata (KH) closure, and the hypernetted chain (HNC) closure where convergent. This core–shell‐asymptotics technique coupling MDIIS for the excluded volume core with iteration of the solvation shells converges as efficiently as MDIIS for the whole 3D box and yields the solvation structure and thermodynamics without loss of accuracy. Although being of benefit for solutes of any size, this memory reduction becomes critical in 3D‐RISM calculations for large solvated systems, such as macromolecules in solution with ions, ligands, and other cofactors. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
 The history of studies on ionic solvation is briefly reviewed, and structural and dynamic properties of solvated ions in aqueous and nonaqueous solutions are discussed. An emphasis is placed on ionic solvation in nonaqueous mixed solvents in which preferential solvation of ions takes place. A new parameter for expressing the degree of preferential solvation of an ion is proposed.  相似文献   

13.
14.
Preferential solvation studies of acridine have been investigated using optical absorption technique. The preferential solvation parameter shows that in dimethyl formamide (DMF)+ethanol mixture, the acridine is preferentially solvated by ethanol in DMF rich region and by DMF in ethanol rich region. In the case of DMF+Carbon tetrachloride mixture acridine is preferentially solvated by DMF.  相似文献   

15.
Proton spin flip satellites have been observed for the first time in the ESR spectrum of solvated electrons in methanol glass at 70 GHz and ≈ 1.5 K. Analysis indicates a solvated electron structure characterized by an electron to OH proton distance of 2.28 ± 0.15 A and 4 ± 2 equivalent first solvation shell methanol molecules. A geometrical model for the solvated electron in methanol glass is suggested.  相似文献   

16.
The optical absorption resulting from pulse radiolysis of ice has been studied with subnanosecond resolution. The half-time for electron solvation is ≈ 400 ps at ?5°C. A species with a spectrum similar to that of the “solvated” electron is formed within the 30 ps time resolution of the measurements and decays over several hundred picoseconds.  相似文献   

17.
Measuring the molecular properties of the surface of acidic and basic aqueous solutions is essential to understanding a wide range of important biological, chemical, and environmental processes on our planet. In the present studies, vibrational sum-frequency spectroscopy (VSFS) is employed in combination with isotopic dilution experiments at the vapor/water interface to elucidate the interfacial water structure as the pH is varied with HCl and NaOH. In acidic solutions, solvated proton species are seen throughout the interfacial region, and they alter the hydrogen bonding between water molecules in ways that reflect their depth in the interfacial region. At the higher frequencies of the OH stretch region, there is spectral evidence for solvated proton species residing in the topmost layers of the interfacial region. As reported in previous VSF studies, more strongly bound solvated proton species are observed at lower OH stretching frequencies. The solvated proton species that have stronger hydrogen bonding are similar in structure to those found in bulk acid solutions and likely reside somewhat deeper in the interfacial region. There is also evidence of OH stretching from solvated protons and relatively strong hydrogen bonding in the solvation sphere that is similar to other solvated ions. In contrast, water molecules solvating OH(-) ions show relatively weak hydrogen bonding and significantly less interfacial order. VSF spectra are acquired under multiple polarizations to provide crucial information for the interpretation of the spectra and for the determination of interfacial structure.  相似文献   

18.
We report 355 and 532 nm photoelectron imaging results for H(-)(NH(3))(n) and NH(2)(-)(NH(3))(n), n = 0-5. The photoelectron spectra are consistent with the electrostatic picture of a charged solute (H(-) or NH(2)(-)) solvated by n ammonia molecules. For a given number of solvent molecules, the NH(2)(-) core anion is stabilized more strongly than H(-), yet the photoelectron angular distributions for solvated H(-) deviate more strongly from the unsolvated limit than those for solvated NH(2)(-). Hence, we conclude that solvation effects on photoelectron angular distributions are dependent on the electronic structure of the anion, i.e., the type of the initial orbital of the photodetached electron, rather than merely the strength of solvation interactions. We also find evidence of photofragmentation and autodetachment of NH(2)(-)(NH(3))(2-5), as well as autodetachment of H(-)(NH(3))(5), upon 532 nm excitation of these species.  相似文献   

19.
Ionic Solvation in Aqueous and Nonaqueous Solutions   总被引:1,自引:0,他引:1  
Summary.  The history of studies on ionic solvation is briefly reviewed, and structural and dynamic properties of solvated ions in aqueous and nonaqueous solutions are discussed. An emphasis is placed on ionic solvation in nonaqueous mixed solvents in which preferential solvation of ions takes place. A new parameter for expressing the degree of preferential solvation of an ion is proposed. Received January 16, 2001. Accepted January 31, 2001  相似文献   

20.
Ab initio calculations were performed to examine the formation of mixed dimer and trimer aggregates between the lithium enolate of acetaldehyde (lithium vinyloxide, LiOV) and lithium chloride, lithium bromide, and lithium amides. Gas-phase calculations showed that in the absence of solvation effects, the mixed trimer 2LiOV.LiX is the most favored species. Solvation in ethereal solvents was modeled by a combination of specific coordination of dimethyl ether ligands on each lithium and "dielectric solvation" (DSE, dielectric solvation energies), immersion of each molecule in a cavity within a continuous dielectric having the dielectric constant of THF at room temperature. DSE is less important for aggregates (reduced dipoles or quadrupoles) than monomers (dipoles) and is also reduced for the coordinatively solvated species. Both solvation terms reduce the exothermicity of aggregation. In many cases, lithium salts that are three- rather than four-coordinate have significant populations at room temperature. The strongly basic lithium amides prefer mixed aggregates with weaker bases than homoaggregates. The computational results are consistent with the limited experimental data available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号