首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The stability of flow with laminar boundary layer separation from a body of revolution aligned with an incompressible gas stream is investigated in a wind tunnel. In several experimental regimes with respect to the Reynolds number hot-wire anemometry is used to determine the main parameters of disturbances which grow behind the separation line, thus initiating transition to the turbulent flow state. The relations between the frequencies, the spatial growth rates of the most “hazardous” disturbances, and the integral characteristics of velocity profiles obtained in the study are in good agreement with the analogous data for plane separation flows.  相似文献   

2.
The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.  相似文献   

3.
We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure gradient flows. It is concluded that the present adverse pressure gradient boundary layers are far from an equilibrium state.  相似文献   

4.
The results of an experimental investigation of the effect of the streamwise pressure gradient in a turbulent boundary layer on the permissible height of the surface roughness of bodies in an incompressible fluid flow are presented. The permissible roughness Reynolds number for which the characteristics of the turbulent boundary layer remain the same as in the case of flow past a smooth surface is determined.  相似文献   

5.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Reynolds Stress Budgets in Couette and Boundary Layer Flows   总被引:1,自引:0,他引:1  
Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without adverse pressure gradient. Comparison of the total shear stress for the two types of flows suggests that the Couette case may be regarded as the high Reynolds number limit for the boundary layer flow close to the wall. The limit values of turbulence statistics close to the wall for the boundary layer for increasing Reynolds number approach the corresponding Couette flow values. The direction of rotation is chosen so that it has a stabilizing effect, whereas the adverse pressure gradient is destabilizing. The pressure-strain rate tensor in the Couette flow case is presented for a split into slow, rapid and Stokes terms. Most of the influence from rotation is located to the region close to the wall, and both the slow and rapid parts are affected. The anisotropy for the boundary layer decreases for higher Reynolds number, reflecting the larger separation of scales, and becomes close to that for Couette flow. The adverse pressure gradient has a strong weakening effect on the anisotropy. All of the data presented here are available on the web [36]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

8.
Turbulent plane boundary layer flows of an incompressible fluid are considered. A refinement of the known Coles wake law is proposed. This refinement makes it possible to ensure the smooth matching of the turbulent boundary layer velocity profile with the outer flow and to extend the range of validity of the law to the case of large positive pressure gradients. The accuracy of the analytical approximation obtained is verified by comparison with the known experimental equilibrium velocity profiles. Using the approximation proposed, a relation for calculating the cross-sectional distribution of the Reynolds stress in the equilibrium boundary layer is derived. The pressure distributions for which the equilibrium turbulent boundary layer flows are single- and two-valued are distinguished.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 89–101.Original Russian Text Copyright © 2005 by Mikhailov.  相似文献   

9.
防风网透流风空气动力学特性大涡数值模拟研究   总被引:2,自引:2,他引:0  
基于有限体积法建立不可压缩粘性流体运动的大涡模拟模型,采用Smagorinsky-Lilly亚格子模型,并引入浸入边界法(IBM)实现无滑移固壁边界条件,对雷诺数30~30000之间防风网透流风进行模拟研究。基于模拟结果,提出蝶型防风网透流风存在4个典型分区结构,流场中存在由蝶型形态引起的大尺度分层剪切流动,加强流体动能耗散。透流风在雷诺数300时发生层流至湍流的转捩,而在雷诺数增长至3000以上时,湍流充分发展,纵向流速脉动强度可达70%。防风网整体空气阻力远大于单个孔口射流阻力的线性叠加,射流间的相互作用以及大尺度的分层剪切结构大大增加流体阻力损失,这为通过优化孔口布置和网板形态来节省材料提供了科学依据。  相似文献   

10.
Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re τ ?=?180, 360, 550 and $1\text{,}000$ . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y ?+??≈?100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.  相似文献   

11.
Flow structures of a separating, reattaching, and recovering boundary layer over a smoothly contoured ramp are examined for an order of magnitude range of Reynolds number, which is achieved by increasing the wind tunnel pressure by up to 8 atm and varying the tunnel speed by a factor of three. The study was performed using instantaneous velocity vector plots and two-point correlations measured by PIV. The present paper discusses length scales of large-scale motions of the flow and roller vortices in the separated shear layer and their dependence on the Reynolds number or the flow geometry. Two-point correlation profiles show that the Reynolds number effects on the correlations vary strongly from region to region within the flow. Downstream of reattachment, correlation profiles show that the inner portion of the boundary layer recovers more rapidly than the outer portion, where excessively active eddies still persist. The Reynolds number effects seen at reattachment diminish in the recovery region, and the correlation profiles start to take on ordinary boundary layer characteristics.  相似文献   

12.
The three-dimensional velocity fluctuation effects on heat transfer enhancement were experimentally investigated using a wind tunnel system and cylinders placed upstream of the test section in the wind tunnel. The cylinders with different diameters were used as turbulators to generate vortical flow motions with three-dimensional velocity fluctuations. A heated plate, part of the tunnel wall, was placed far downstream of the cylinders such that it was subjected mainly to flows with velocity fluctuations but with negligible steady vortical motions. These studies included three-component velocity measurements to characterize the near-wall and cross-section velocity fields and to obtain the turbulent kinetic energy. The temperatures were measured by thermocouples on the heated plate to obtain the convection heat transfer coefficients and the Nusselt numbers. Results indicate that the heat transfer was enhanced by the velocity fluctuations, which is attributed to the modification of boundary layer velocity profiles without the modification of boundary layer thickness. The resulting normalized Nusselt number was approximately a parabolic function of a dimensionless parameter, the product of Reynolds number and normalized turbulent kinetic energy.  相似文献   

13.
This study extends the reduced Navier–Stokes (RNS) global pressure relaxation procedure developed by Rubin and co-workers for external flow to internal flow applications. The streamwise pressure gradient is split into a backward-differenced or initial value component, as in boundary layer marching, and a forward-differenced or boundary value component that represents the elliptic downstream effects. The streamwise convection terms are upwind-differenced and all other streamwise derivatives are backward-differenced. We thus obtain a standard boundary layer marching technique imbedded in a conventional line relaxation technique. For compressible flow the pressure iteration determines the interior flow interation as well as the inlet mass flux that is consistent with the outflow pressure boundary condition. Results have been computed for incompressible flow in both rectangular and curved channels, and for subsonic compressible flow in the simulation of an aerofoil in a wind tunnel. Converged solutions were obtained over a range of Reynolds numbers generating small to moderately large separation bubbles.  相似文献   

14.
A two-dimensional boundary layer of an incompressible viscous fluid is investigated in the presence of velocity and pressure fluctuations. The characteristic Reynolds number is high and, as a consequence, the unsteady (turbulent) boundary layer is thin. An asymptotic approach is used to analyze the complete unsteady Navier–Stokes equations, which makes it possible to separate out the characteristic viscous and inviscid flow zones in the boundary layer and to solve the corresponding problems. The analytical expressions for the viscous fluctuations governed by the Hamel equation with a large value of the parameter are derived.  相似文献   

15.
A 24′′ (610 mm) access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements in a low speed linear cascade wind tunnel with moving wall simulation. The probe has a 610 mm access length and achieves a measurement spatial resolution of 100 μm by using off-axis optical heads. With the relatively large access length, the LDV probe allows for measurements from the side of a wind tunnel instead of through the tunnel floor, while the high spatial resolution allows for quality near-wall measurements. The probe has been tested in a zero-pressure gradient 2D turbulent boundary layer and the test results agree well with the experimental data measured with different LDV systems and hot-wire anemometery for the boundary layer flows. The energy spectral density was estimated using a slot correlation, and Von Kármán’s model for the energy-spectrum function was used to analyze the measured spectral data to estimate the turbulent kinetic energy dissipation rate, which compares favorably with the measured production values in the log-layer region of the turbulent boundary layer. Measurements are presented for the moving endwall boundary layer at the inlet of the linear compressor cascade facility to validate the capability of this LDV for tip leakage flow measurements. These results indicate that the moving endwall reduces velocity gradients in the near-wall region and results in less production of Reynolds stresses and turbulent kinetic energy compared to the stationary endwall case.  相似文献   

16.
Air flow field around a surface-mounted hemisphere of a fixed height for two different turbulent boundary layers (thin and thick) are investigated experimentally and numerically. Flow measurements are performed in a wind tunnel using hot-wire anemometer and streamwise component of velocity fluctuation are calculated using a special developed program of the hardware system. Mean surface pressure coefficients and velocity field for the same hemisphere are determined by the numerical simulation. Turbulent flow field and intensity are measured for two types of boundary layers and compared at various sections in both streamwise and spanwise directions. Numerical scheme based on finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Studies are performed for Reynolds number, ReH = 32,000. Based on the numerical simulation using RNG kε turbulence model, flow pathlines, separation region and recirculation area are determined for the two types of turbulent boundary layer flows and complex flow field and recirculation regions are identified and presented graphically.  相似文献   

17.
Flow and heat transfer characteristics over flat, concave and convex surfaces have been investigated in a low speed wind tunnel in the presence of adverse and favourable pressure gradients (k), for a range of –3.6 × 10–6 ≤ k ≤ +3.6 × 10–6. The laminar near zero pressure gradient flow, with an initial momentum thickness Reynolds number of 200, showed that concave wall boundary layer was thinner and heat transfer coefficients were almost 2 fold of flat plate values. Whereas for the same flow condition, thicker boundary layer and 35% less heat transfer coefficients of the convex wall were recorded with an earlier transition. Accelerating laminar flows caused also thinner boundary layers and an augmentation in heat transfer values by 28%, 35% and 16% for the flat, concave and convex walls at k = 3.6 × 10–6. On the other hand decelerating laminar flows increased the boundary layer thickness and reduced Stanton numbers by 31%, 26% and 22% on the flat surface, concave and convex walls respectively. Turbulent flow measurements at k = 0, with an initial momentum thickness Reynolds number of 1100, resulted in 30% higher and 25% lower Stanton numbers on concave and convex walls, comparing to flat plate values. Moreover the accelerating turbulent flow of k = 0.6 × 10–6 brought about 29%, 30% and 24% higher Stanton numbers for the flat, concave and convex walls and the decelerating turbulent flow of k = –0.6 × 10–6 caused St to decrease up to 27%, 25% and 29% for the same surfaces respectively comparing to zero pressure gradient values. An empirical equation was also developed and successfully applied, for the estimation of Stanton number under the influence of pressure gradients, with an accuracy of better than 4%.  相似文献   

18.
The interaction between longitudinal vortices and flat plate boundary layer has been studied numerically for both laminar and turbulent flow situations. The vortices are assumed to be placed in an otherwise two-dimensional boundary layer flow. The flow is assumed to be incompressible and steady. Considering the fact that the velocity, vorticity and temperature gradients in the transverse directions are much larger than the longitudinal (streamwise) gradients for these flows, the original Navier Stokes equations are parabolized in the streamwise direction. A simple model, based on Boussinesq hypothesis, is used for turbulent flow. The discretized equations are then solved step by step in the streamwise direction, using an iterative procedure at each station. Numerical solutions have been obtained for different parameters, such as the Reynolds number, the circulation and the initial position of the vortices. The computed flow patterns and the skin friction coefficient and Stanton number are found to be qualitatively consistent with available experimental results. It is shown that the interaction between the vortices and the boundary layer may severely disturb the boundary layer flow field and thus considerably increase the local skin friction and heat transfer rate on surface of an aircraft.  相似文献   

19.
Short cylindrical struts are commonly employed to carry services across the annular flow passages of gas turbines and to provide mechanical support. Velocity variations along the span of the strut will be large and secondary flow becomes important. For bluff bodies, boundary layer separation tends to be fixed close to the maximum thickness of the strut, or any sharp edges, so that secondary flow effects have only a minor influence on wake formation. In the case of more streamlined shapes, the effect of Reynolds number and freestream turbulence level on boundary layer growth are much more significant. Moreover, the secondary flows generated by the interaction between the strut cross-section and the end-wall boundary layers may influence the position of separation, thus changing the distributions of pressure on the strut surface and in the wake. These modifications lead to large variations in the total drag force experienced by the strut. A recent wind tunnel investigation is described in which wake pressure measurements have been used to determine the additional losses produced by the secondary flow generation. Experiments have been performed on isolated struts for both circular and streamlined cross-section over a range of Reynolds number, aspect ratio and thickness-to-chord ratio. A principal finding is that the results for the streamlined struts may be reduced to a correlation which embraces the effects of cross-sectional geometry as well as the end-wall boundary layer thickness, the Reynolds and the Mach numbers.  相似文献   

20.
Experiments were conducted in a wind tunnel to assess the effect of a moving wall on a fully developed, equilibrium turbulent boundary layer. Pitot-static and total head probes were used in conjunction with both single- and two-component hot-wire anemometer probes to quantify the effect of wall motion on the boundary layer velocity statistics. A variable speed, seamless belt formed the wind tunnel test section wall. When stationary, the belt was found to possess a fully developed, equilibrium turbulent boundary layer in excellent agreement with archival data. With the tunnel wall moving at the free-stream speed, and at a sufficient distance above the wall, the velocity statistics in the moving-wall boundary layer were found to collapse well when scaled as a self-preserving turbulent wake. The near-wall mean velocity profile of the moving wall was found to exhibit an extended region of linearity compared to canonical turbulent boundary layer and internal flows. This can be attributed to the reduced shear resulting from wall motion and the subsequent reduction in Reynolds stress. Received: 2 June 1999/Accepted: 8 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号