首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The properties of InSb quantum dots grown by metal organic vapour phase epitaxy are summarised as deduced from photoluminescence, magneto-photoluminescence, and far-infrared modulated photoluminescence experiments. A technique is described for shifting the emission of these dots to lower energy by coupling them with a narrow InAs quantum well, leading to the demonstration of electroluminescence at 2.3 μm.  相似文献   

2.
We present new growth conditions for growing high-quality CdSe/ZnSe quantum dots with photoluminescence emission measurable up to room temperature. The surface morphology is characterized in situ by Reflective High Energy Electron Diffraction (RHEED). The key point is the introduction of a new step in the growth process using amorphous selenium to induce a 2D–3D transition of a CdSe strained layer on ZnSe to form the dots. Optical characterizations by photoluminescence of CdSe/ZnSe quantum dots obtained that way, as well as X-ray diffraction results are also discussed here.  相似文献   

3.
The exciton binding energy and photoluminescence energy transition in a GaAs-Ga1−xAlxAs cylindrical quantum dot are studied with the use of the effective mass approximation and a variational calculation procedure. The influence of these properties on the application of an electric field along the growth direction of the cylinder is particularly considered. It is shown that for zero applied field the binding energy and the photoluminescence energy transition are decreasing functions of the quantum dot radius and height. Given a fixed geometric configuration, both quantities then become decreasing functions of the electric field strength as well.  相似文献   

4.
Growth, photoluminescence characterisation and time-resolved optical measurements of electron spin dynamics in (1 1 0)-oriented GaAs/AlGaAs quantum wells are described. Conditions are given for MBE growth of good-quality quantum wells, judged by the width of low-temperature excitonic photoluminescence. At 170 K the electron spin relaxation rate in (1 1 0)-oriented wells shows a 100-fold reduction compared to equivalent (1 0 0)-oriented wells and also a 10-fold increase with applied electric field from 20 to 80 kV cm−1. There is evidence for similar dramatic effects at 300 K. Spin relaxation is field independent below 20 kV cm−1 reflecting quantum well asymmetry. The results indicate the achievability of voltage-gateable quantum well spin memory time longer than 10 ns at room temperature simultaneously with high electron mobility.  相似文献   

5.
We have studied the photoluminescence and time-resolved photoluminescence of a set of InGaN quantum wells with well thickness from 1 to 7.5 nm. An analysis of the phonon satellites at 5 K shows Huang–Rhys factors from 0.32 to 0.44. The increase of this factor is caused by the electron–hole separation induced by the piezoelectric field. The time-resolved photoluminescence at room temperature shows that the decay time of the 1 and 2 nm wells does not depend on the wavelength. The maximum decay time is around 600 ps for the 2, 3 and 4 nm wells. However, for the 3 and 4 nm wells a decrease of the photoluminescence decay time is observed at the highest wavelengths. This suggest the onset of a non-radiative process in these samples. The optimum well width for efficient emission for these single quantum wells was found to be 2 nm.  相似文献   

6.
In this paper, I study the effect of a small deviation from the Fermi–Dirac statistics on the quantum ion acoustic waves. For this purpose, a quantum hydrodynamic model is developed based on the Polychronakos statistics, which allows for a smooth interpolation between the Fermi and Bose limits, passing through the case of classical particles. The model includes the effect of pressure as well as quantum diffraction effects through the Bohm potential. The equation of state for electrons obeying fractional statistics is obtained and the effect of fractional statistics on the kinetic energy and the coupling parameter is analyzed. Through the model, the effect of fractional statistics on the quantum ion acoustic waves is highlighted, exploring both linear and weakly nonlinear regimes. It is found that fractional statistics enhance the amplitude and diminish the width of the quantum ion acoustic waves. Furthermore, it is shown that a small deviation from the Fermi–Dirac statistics can modify the type structures, from bright to dark soliton. All known results of fully degenerate and non-degenerate cases are reproduced in the proper limits.  相似文献   

7.
We calculated the photoluminescence spectra of charged magneto-excitons in single two-dimensional parabolic quantum dots, using an unrestricted Hartree–Fock method. The calculated luminescence spectra explain well the observed red shifts of transition energies of InAs/GaAs single quantum dot by additional electron capture in a dot. The magnetic-field-induced transition of the ground state configuration of trapped electrons causes drastic change in the photoluminescence spectra. The dependence of photoluminescence intensities of charged excitons on the excess energies of photogenerated carriers above the bulk GaAs energy gap is studied phenomenologically, by calculating the steady state electron population probability in a dot.  相似文献   

8.
Mechanisms of the generation and the radiative and nonradiative recombination of carriers in structures with GaN quantum dots in the AlN matrix are studied experimentally and theoretically. Absorption, stationary and nonstationary photoluminescence of quantum dots at different temperatures are investigated. It is found that the photoluminescence intensity considerably decreases with the temperature while the photoluminescence kinetics weakly depends on the temperature. The photoluminescence kinetics is shown to be determined by radiative recombination inside quantum dots. A mechanism of nonradiative recombination is proposed, according to which the main reason for the thermal quenching of photoluminescence is nonradiative recombination of charge carriers, generated by optical transitions between quantum dots and wetting layer states.  相似文献   

9.
The electric field dependence of the electron/hole wave function and the radiation energy of an exciton in a Be-δ-doped 80 nm quantum well (QW) is studied experimentally and compared it with variational calculation. The photoluminescence (PL) spectra show Stark shifts depending on the gate electric field and PL intensity of the exciton of the first excited state has a dip in the electric-field dependence which reflects the node of the electron wave function.  相似文献   

10.
Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot–quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry.  相似文献   

11.
Nanocrystalline (nc)-SiC film has been deposited by helicon wave plasma enhanced chemical vapor deposition technique and intense blue-white light emission is obtained. Microstructure analyses show that the 3C–SiC particles are embed in amorphous SiC matrix, and the average size of the nc-SiC is 3.96 nm. The photon energy of the main photoluminescence (PL) band is higher than the band gap of bulk SiC, which indicates that the optical emission mainly occurs in quantum states of 3C–SiC nanocrystals. In addition, the band tail states of amorphous SiC also contribute to the optical emission. Three decay processes are obtained from time-resolved PL spectra by deconvolution treatment, and the decay components correspond to the quantum confinement effect (QCE), surface states of nc-SiC particles, and band tail of amorphous SiC, respectively. The fractional integrated PL intensity of QCE related decay process decreases dramatically in the lower PL photon energy, indicating that the QCE mainly contributes to the short wavelength optical emission.  相似文献   

12.
The photoluminescence characteristics and quantum yields of poly(thiophene-3-yl-acetic acid 8-quinolinyl ester) have been studied. Fluorescence measurements indicate that fluorescence quantum efficiency increases with decreasing the concentration of polymer solution. The quantum yield of the polymer in the solution is higher than that of the Rhodamine B dye at lower concentration. The behaviour of photoluminescence property is studied under different acidic conditions. The fluorescence quenching is observed in the acid medium without any shift in the wavelength.  相似文献   

13.
The dependence of the optical quality, i.e. the line width and homogeneity of (1 1 0) oriented quantum wells on the substrate temperature, the As pressure as well as on the As species is studied by means of micro-photoluminescence. Molecular beam epitaxial growth using the As dimer leads to a photoluminescence line width as narrow as 5.5 meV for 7 nm wide quantum wells compared to a value of 8 meV for the As tetramer source. In addition to the small line widths which can be achieved using As , quantum wells grown under these conditions are also superior to those using As in terms of uniformity on a m length scale. In contrast, the peak mobility of a two-dimensional electron system located at a (1 1 0) oriented GaAs/AlGaAs heterointerface of cm V s is obtained for tetramer growth, while the use of As degrades the electron mobility to values below 500 000 cm V s.  相似文献   

14.
The optical properties of InAs quantum dots with GaAsSb buffer, capping and cladding layers of different alloy compositions are studied by photoluminescence techniques. Fully strained GaAsSb layers show that the inclusion of a buffer layer gives a blue-shift to quantum dot emission, while for quantum dots capped with GaAsSb a clear red-shift is seen. Power-dependent photoluminescence suggests a transition from type-I to type-II can be achieved by GaAsSb at Sb composition between 11–13%, while the transition for the GaAsSb cladding layer occurs at around 11%. At low Sb composition, good crystal quality and energy barrier are detected by temperature-dependent photoluminescence, while high-level dislocation and defects exist under high antimony content, as evidenced by X-Ray Diffraction and Transmission Electron Microscopy.  相似文献   

15.
用稳态光谱和时间分辨光谱技术研究了空穴传输材料对CdSe/ZnSe 与CdSe/ZnS核壳量子点的荧光影响。结果表明,空穴传输材料对量子点有较强的猝灭作用,随空穴传输材料分子浓度的增加,量子点的荧光强度明显地被猝灭,同时量子点的荧光寿命也被减短。两种不同空穴传输分子对CdSe/ZnSe量子点的荧光猝灭明显不同。在与相同空穴传输分子相互作用时,包覆ZnS壳层的CdSe核壳量子点荧光猝灭效率明显低于包覆ZnSe壳层的CdSe核壳量子点。量子点的荧光猝灭过程可以解释为静态猝灭和动态猝灭过程,其中静态猝灭来源于量子点表面与空穴传输材料间相互作用,而动态猝灭则主要来源于量子点到空穴传输材料的空穴转移过程。实验结果表明空穴传输材料的种类以及核壳量子点的壳层结构都对其荧光猝灭效应起关键作用。  相似文献   

16.
The authors report the fabrication of a one-dimensional microcavity structure embedded with colloidal CdSe/ZnS core/shell quantum dots using solution processing. The microcavity structures were fabricated by spin coating alternating layers of polymers of different refractive indices (poly-vinylcarbazole—PVK, and poly-acrylic acid—PAA) to form the distributed Bragg reflectors (DBRs). Greater than 90% reflectivity was obtained using ten periods of the structure. The one-dimensional microcavity was formed by sandwiching a λ/n thick defect layer between two such DBRs. The emission of the quantum dots from the microcavity structure demonstrated directionality following the cavity mode dispersion and spectral narrowing. Room temperature time-resolved photoluminescence measurements carried out on this structure showed significant reduction in the photoluminescence decay time which is attributed primarily to nonradiative mechanism originating in the presence of the PVK host matrix. The photoluminescence decay time of the quantum dots was found to be 1000 ps while for the quantum dots embedded in the polymer host and the microcavity were 400 and 150 ps, respectively.  相似文献   

17.
We have investigated circular-polarized photoluminescence (CPL) from a novel quantum structure in which a ferromagnetic semiconductor (Ga,Mn)As is placed adjacent to the GaAs quantum well. By eliminating the contribution of the magneto-circular dichroism effect of the (Ga,Mn)As top layer from the observed CPL, we found a small but nonnegligible contribution of quantum mechanical coupling between the GaAs quantum well states and the spin-polarized states in (Ga,Mn)As.  相似文献   

18.
我们测量了低N组分的InGaAsN/InGaAs/GaAs量子阱材料的光致发光(PL)谱,测量温度范围从13K到300K。实验结果显示,InGaAsN的PL谱的主峰值的能量位置随温度的变化呈现出反常的S型温度依赖关系。用Varshni经验公式对实验数据进行拟合之后,发现在低温下InGaAsN量子阱中的载流子是处于局域态的。此外,我们还测量了样品在不同的温度、不同的能量位置的瞬态谱,结果进一步证实了:在低温下,InGaAsN的PL谱谱峰主要是局域态激子的复合发光占据主导地位,而且InGaAsN中的载流子局域态主要是由N等电子缺陷造成的涨落势引起的。  相似文献   

19.
We introduce a photoluminescence inner core excitation (PLICE) for the studies of semiconductor quantum structures. This novel method, in which we use synchrotron radiation as tunable excitation source, is expected to facilitate us to obtain electronic and compositional information about buried quantum structures. Here we report experimental results on quantum dots (QDs) and quantum wires (QWRs), in order to demonstrate potential applicability of the method to the semiconductor nanostructure studies.  相似文献   

20.
We studied self-assembled InAs/GaAs quantum dots by contrasting photoluminescence and photoreflectance spectra from 10 K to room temperature. The photoluminescence spectral profiles comprise contributions from four equally separated energy levels of InAs quantum dots. The emission profiles involving ground state and excited states have different temperature evolution. Abnormal spectral narrowing occurred above 200 K. In the photoreflectance spectra, major features corresponding to the InAs wetting layer and GaAs layers were observed. Temperature dependences of spectral intensities of these spectral features indicate that they originate from different photon-induced modulation mechanisms. Considering interband transitions of quantum dots were observed in photoluminescence spectra and those of wetting layer were observed in photoreflectance profiles, we propose that quantum dot states of the system are occupied up to the fourth energy level which is below the wetting layer quantum state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号