首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we study the problem of Hamiltonization of nonholonomic systems from a geometric point of view. We use gauge transformations by 2-forms (in the sense of Ševera and Weinstein in Progr Theoret Phys Suppl 144:145 154 2001) to construct different almost Poisson structures describing the same nonholonomic system. In the presence of symmetries, we observe that these almost Poisson structures, although gauge related, may have fundamentally different properties after reduction, and that brackets that Hamiltonize the problem may be found within this family. We illustrate this framework with the example of rigid bodies with generalized rolling constraints, including the Chaplygin sphere rolling problem. We also see through these examples how twisted Poisson brackets appear naturally in nonholonomic mechanics.  相似文献   

2.
非完整约束系统几何动力学研究进展:Lagrange理论及其它   总被引:1,自引:1,他引:0  
近10年来, 非完整力学的发展主要集中在两个相互关联的方向上, 一个是非完整运动规划, 另一个则是非完整约束系统的几何动力学, 这两个研究方向都充分地利用了现代几何学, 如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论, 包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学, 文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外, 简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.   相似文献   

3.
4.
The motion of a double planet in the gravitational force field of a massive planet modeled by a viscoelastic body is studied. The double planet is modeled by a viscoelastic body and a material point. These viscoelastic bodies are homogeneous, isotropic and, in their natural undeformed state, occupy spherical regions in the three-dimensional Euclidean space. The problem is solved in the framework of a linear model in the theory of viscoelasticity. The motion separation method and the averaging method are applied to derive an approximate system of equations describing the evolution of translationalrotational motion for the mechanical system under study. The Earth-Moon system is considered in the gravitational field of the Sun as an example of a double planet.  相似文献   

5.
The constitutive relations of nonlinear mechanics of a magnetoelectroelastic medium subjected to initial mechanical stresses are linearized in the framework of material (Lagrangian) coordinates. The final expressions are constructed independently of the choice of curvilinear coordinates and are represented in a form convenient for theoretical and applied studies. The constitutive relations for the motion of a prestressed magnetoelectroelastic medium are given in rectangular Cartesian coordinates. The influence of the initial mechanical stresses on piezomagnetoelectric materials of the class 6mm is studied.  相似文献   

6.
In the framework of Newtonian mechanics, a study is made of the spherically symmetric problem of the adiabatic motion of a gravitating perfect gas in the presence of a shock wave produced by inhomogeneous gravitational collapse or a point explosion. The method of Golubyatnikov [1, 2] is used to construct a system of integro—differential inequalities that determine, in particular, the law of motion of the shock wave if the initial state of the gas is known. The investigated examples include some self-similar and nearly self-similar solutions to the problem of the gravitational contraction of dust with the formation of a strong shock wave, possibly with the release of energy; the self-similar problem of a point explosion in a gas at rest; and also the problem of the equilibrium of a gas sphere for =4/3 and arbitrary distribution of the entropy. In these cases, the inequalities reduce to algebraic relations and can be solved numerically.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 169–173, September–October, 1980.  相似文献   

7.
One difficulty encountered in solving mechanical problems with complicated interaction is to express either the moments of forces or the force function via the phase variables of the problem. Here various transformations of coordinate systems are used, because interactions are determined by a relation between tensor variables one of which refers to the body and the other refers to the field. In this connection, the usual definition of a tensor in Cartesian coordinates is inconvenient because of the fact that the components of a tensor of rank l ≥ 2 can be arranged as several linear combinations that behave differently under rotations of the coordinate system. Naturally, one needs to define tensors in such a way that their components and linear combinations of these be transformed in a unified manner under rotations of the coordinate system. This requirement is satisfied by irreducible tensors. The mathematical apparatus of irreducible tensors was created to satisfy the requirements of quantum mechanics and turned out to be rather universal. As far as the author knows, this apparatus was first used in mechanics by G. G. Denisov and the author of the present paper [1]. Using this apparatus, one can see the clear physical meaning of complicated interactions, express these interactions in invariant form, easily perform transformations from one coordinate system to another coordinate system turned relative to the first, consider rather complicated types of interactions writing them in compact form explicitly depending on the phase variables of the problem, easily use the symmetry of both the rigid body and the force field structure, and perform the averaging procedure for the entire object rather than componentwise. The present paper further develops the paper [1]. We present a brief introduction to the theory of irreducible tensors. We show that the force function of various interactions between a rigid body and a force field can be represented as the scalar product of irreducible tensors. We study general properties of evolution motions of a rigid body in axisymmetric and nonsymmetric force fields under the action of moments caused by various harmonics of the force function.  相似文献   

8.
We present a (noncanonical) Hamiltonian model for the interaction of a neutrally buoyant, arbitrarily shaped smooth rigid body with N thin closed vortex filaments of arbitrary shape in an infinite ideal fluid in Euclidean three-space. The rings are modeled without cores and, as geometrical objects, viewed as N smooth closed curves in space. The velocity field associated with each ring in the absence of the body is given by the Biot–Savart law with the infinite self-induced velocity assumed to be regularized in some appropriate way. In the presence of the moving rigid body, the velocity field of each ring is modified by the addition of potential fields associated with the image vorticity and with the irrotational flow induced by the motion of the body. The equations of motion for this dynamically coupled body-rings model are obtained using conservation of linear and angular momenta. These equations are shown to possess a Hamiltonian structure when written on an appropriately defined Poisson product manifold equipped with a Poisson bracket which is the sum of the Lie–Poisson bracket from rigid body mechanics and the canonical bracket on the phase space of the vortex filaments. The Hamiltonian function is the total kinetic energy of the system with the self-induced kinetic energy regularized. The Hamiltonian structure is independent of the shape of the body, (and hence) the explicit form of the image field, and the method of regularization, provided the self-induced velocity and kinetic energy are regularized in way that satisfies certain reasonable consistency conditions.   相似文献   

9.
In this paper, we consider the Hamiltonian formulation of nonholonomic systems with symmetries and study several aspects of the geometry of their reduced almost Poisson brackets, including the integrability of their characteristic distributions. Our starting point is establishing global formulas for the nonholonomic Jacobiators, before and after reduction, which are used to clarify the relationship between reduced nonholonomic brackets and twisted Poisson structures. For certain types of symmetries (generalizing the Chaplygin case), we obtain genuine Poisson structures on the reduced spaces and analyze situations in which the reduced nonholonomic brackets arise by applying a gauge transformation to these Poisson structures. We illustrate our results with mechanical examples, and in particular show how to recover several well-known facts in the special case of Chaplygin symmetries.  相似文献   

10.
11.
The Stokes motions of three-dimensional screw-sensed slender particles in a homogeneous shear field are investigated, including the effects of buoyancy. Conclusions are drawn about the possibility of achieving a separation of mixtures of right- and left-handed particles. The linearity of the Stokes equations allows complex flows to be solved by adding the effects of the several terms which describe the flow in which the particle is immersed. The homogeneous shear flow considered here consists of three such terms; solutions for a series of 12 unit motions are sufficient to determine the hydrodynamic resistance tensors. The forces and torques experienced by screw-sensed particles are calculated from these 51 resistance tensors, using slender-filament theory. The results allow an estimate of the range of buoyancy parameters for which gravitational sedimentation can be neglected. The fundamental component of the particle motion is a rotation, at approximately the same angular velocity as that of the fluid. Superimposed on this are variations, of large period, in the particle orientation. A phase plane analysis is used to find the terminal orientations. Very long calculation times are required for the phase portrait. An approximate method based on azimuthally-averaged equations is developed to avoid the requirements for long time integration.  相似文献   

12.
A time-accurate solution method for the incompressible Navier-Stokes equations in generalized moving coordinates is presented. A finite volume discretization method that satisfies the geometric conservation laws for time-varying computational cells is used. The discrete equations are solved by a fractional step solution procedure. The solution is second-order-accurate in space and first-order-accurate in time. The pressure and the volume fluxes are chosen as the unknowns to facilitate the formulation of a consistent Poisson equation and thus to obtain a robust Poisson solver with favourable convergence properties. The method is validated by comparing the solutions with other numerical and experimental results. Good agreement is obtained in all cases.  相似文献   

13.
The case of the planar circular restricted three-body problem where one of the two primaries has a stronger gravitational field with respect to the classical Newtonian field is investigated. We consider the case where two primaries have the same mass, so as the the only difference between them to be the strength of the gravitational field which is controlled by the power p of the potential. A thorough numerical analysis takes place in several types of two dimensional planes in which we classify initial conditions of orbits into three main categories: (1) bounded, (2) escaping and (3) collision. Our results reveal that the power of the gravitational potential has a huge impact on the nature of orbits. Interpreting the collision motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collision basins and we managed to correlate them with the corresponding escape and collision time of the orbits. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.  相似文献   

14.
The full dynamics of a spacecraft around an asteroid, in which the gravitational orbit–attitude coupling is considered, has been shown to be of great value and interest. Nonlinear stability of the relative equilibria of the full dynamics of a rigid spacecraft around a uniformly rotating asteroid is studied with the method of geometric mechanics. The non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are given in the differential geometric method. A classical kind of relative equilibria of the spacecraft is determined from a global point of view, at which the mass center of the spacecraft is on a stationary orbit, and the attitude is constant with respect to the asteroid. The conditions of nonlinear stability of the relative equilibria are obtained with the energy-Casimir method through the semi-positive definiteness of the projected Hessian matrix of the variational Lagrangian. Finally, example asteroids with a wide range of parameters are considered, and the nonlinear stability criterion is calculated. However, it is found that the nonlinear stability condition cannot be satisfied by spacecraft with any mass distribution parameters. The nonlinear stability condition by us is only the sufficient condition, but not the necessary condition, for the nonlinear stability. It means that the energy-Casimir method cannot provide any information about nonlinear stability of the relative equilibria, and more powerful tools, which are the analogues of the Arnold’s theorem in the canonical Hamiltonian system with two degrees of freedom, are needed for a further investigation.  相似文献   

15.
In the presented paper, a problem of non-holonomic constrained mechanical systems is treated. New methods in non-holonomic mechanics are applied to a problem of a general coupled rolling motion. Two goals are stressed.The first of them lies in the solution of an originally formulated problem of rolling motion of two rigid cylindrical bodies in the homogeneous gravitational field leading typically to non-linear equations of motion. A solid cylinder can roll inside a ring under the static frictional force assuring rolling without slipping, the ring rolls again without slipping along a generally shaped terrain formed by hills and valleys. “Surprising behaviour” of the mechanical system which permits interesting applications is studied and discussed.The second purpose of the paper is to show that the geometrical theory of non-holonomic constrained systems on fibered manifolds proposed and developed in the last decade by Krupková and others is an effective tool for solving non-holonomic mechanical problems. A comparison of this method to alternative methods is given and the benefits of coordinate-free formulation are mentioned.In this paper, the geometrical theory is applied to the abovementioned mechanical problem. Both types of equations of motion resulting from the theory—deformed equations with the so-called Chetaev-type constraint forces containing Lagrange multipliers, and reduced equations free from multipliers—are found and discussed. Numerical solutions for two particular cases of the motion of the cylindrical system along a cylindrical surface are presented.  相似文献   

16.
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard–Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler–Poincaré and Hamilton–Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler–Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange–Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.  相似文献   

17.
The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke’s law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.  相似文献   

18.
The loss of ellipticity indicated through the rank-one-convexity condition is elaborated for the spatial and material motion problem of continuum mechanics. While the spatial motion problem is characterized through the classical equilibrium equations parametrised in terms of the deformation gradient, the material motion problem is driven by the inverse deformation gradient. As such, it deals with material forces of configurational mechanics that are energetically conjugated to variations of material placements at fixed spatial points. The duality between the two problems is highlighted in terms of balance laws, linearizations including the consistent tangent operators, and the acoustic tensors. Issues of rank-one-convexity are discussed in both settings. In particular, it is demonstrated that if the rank-one-convexity condition is violated, the loss of well-posedness of the governing equations occurs simultaneously in the spatial and in the material motion context. Thus, the material motion problem, i.e. the configurational force balance, does not lead to additional requirements to ensure ellipticity. This duality of the spatial and the material motion approach is illustrated for the hyperelastic case in general and exemplified analytically and numerically for a hyperelastic material of Neo-Hookean type. Special emphasis is dedicated to the geometrical representation of the ellipticity condition in both settings.  相似文献   

19.
Corrugated plates are widely used in modern constructions and structures, because they, in contrast to plane plates, possess greater rigidity. In many cases, such a plate can be modeled by a homogeneous anisotropic plate with certain effective flexural and tensional rigidities. Depending on the geometry of corrugations and their location, the equivalent homogeneous plate can also have rigidities of mutual influence. These rigidities allow one to take into account the influence of bending moments on the strain in the midplane and, conversely, the influence of longitudinal strains on the plate bending [1]. The behavior of the corrugated plate under the action of a load normal to the midsurface is described by equations of the theory of flexible plates with initial deflection. These equations form a coupled system of nonlinear partial differential equations with variable coefficients [2]. The dependence of the coefficients on the coordinates is determined by the corrugation geometry. In the case of a plate with periodic corrugation, the coefficients significantly vary within one typical element and depend on the values of local variables determined in each of the typical elements. There is a connection between the local and global variables, and therefore, the functions of local coordinates are simultaneously functions of global coordinates, which are sometimes called rapidly oscillating functions [3].One of the methods for solving the equations with rapidly oscillating coefficients is the asymptotic method of small geometric parameter. The standard procedure of this method usually includes preparatory stages. At the first stage, as a rule, a rectangular periodicity cell is distinguished to be a typical element. At the second stage, the scale of global coordinates is changed so that the rectangular structure periodicity cells became square cells of size l × l. The third stage consists in passing to the dimensionless global coordinates relative to the plate characteristic dimension L. As a result, the dependence between the new local variables and the new scaled dimensionless variables is such that the factor 1/α, where α=l/L ? 1 is a small geometric parameter, appears in differentiating any function of the local coordinate with respect to the global coordinate. After this, the solution of the problem in new coordinates is sought as an asymptotic expansion in the small geometric parameter [1], [4–10].We note that, in the small geometric parameter method, the asymptotic series simultaneously have the form of expansions in the gradients of functions depending only on the global coordinates. This averaging procedure can be applied to linear and nonlinear boundary value problems for differential equations with variable periodic coefficients for which the periodicity cell can be affinely transformed into the periodicity cube. In the case of an arbitrary dependence of the coefficients on the coordinates (including periodic dependence), another averaging technique can be used in linear problems. This technique is based on the possibility of the integral representation of the solution of the original problem for the linear equation with variables coefficients in terms of the solution of the same problem for an equation of the same type but with constant coefficients [11–13]. The integral representation implies that the solution of the original problem can be represented in the form of the series in the gradients of the solution of the problem for the equation with constant coefficients [13].The aim of the present paper is to develop methods for calculating effective characteristics of corrugated plates. To this end, we first write out the equilibrium equations for a flexible anisotropic plate, which is inhomogeneous in the thickness direction and in the horizontal projection, with an initial deflection. We write these equations in matrix form, which allows one to significantly reduce the length of the expressions and to simplify further calculations. After this, we average the initial matrix equations with variable coefficients. The averaging procedure implies the statement of problems such that, after solving them, we can calculate the desired effective characteristics. By way of example, we consider the case of a corrugated plate made of a homogeneous isotropic material whose corrugations are hexagonal in the horizontal projection. In this case, we obtain approximate expressions for the components of the effective tensors of flexural rigidity and longitudinal compliance and expressions for the effective plate thickness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号