首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectra of the following acetylenic derivatives of iron, ruthenium and osmium carbonyls are reported: the iron compounds Fe2(CO)6[C2(C6H5)s2]2, Fe2(CO)6[C2(CH3)2]2 and Fe2(CO)6[C2(C2H5)2]2, the ruthenium compounds Ru2(CO)6[C2(C6H5)2]2, and Ru2(CO)6[C2(CH3)2]2 and the osmium compounds Os2(CO)6[C2(C6H5)2]2, Os2(CO)6[C2HC6H5]2 and Os2(CO)6[C2(CH3)2]2. Iron compounds exhibit breakdown schemes where binuclear, mononuclear and hydrocarbon ions are present. On the other hand, ruthenium and osmium compounds fragment in a similar way and give rise to singly and doubly charged binuclear ions. Phenylic derivatives of ruthenium and osmium also give weak triply charged ions. The results are discussed in terms of relative strengths of the metal-metal and metal-carbon bonds.  相似文献   

2.
The reaction of o-C6H4(AsMe2)2 with VCl4 in anhydrous CCl4 produces orange eight-coordinate [VCl4{o-C6H4(AsMe2)2}2], whilst in CH2Cl2 the product is the brown, six-coordinate [VCl4{o-C6H4(AsMe2)2}]. In dilute CH2Cl2 solution slow decomposition occurs to form the VIII complex [V2Cl6{o-C6H4(AsMe2)2}2]. Six-coordination is also found in [VCl4{MeC(CH2AsMe2)3}] and [VCl4{Et3As)2]. Hydrolysis of these complexes occurs readily to form vanadyl (VO2+) species, pure samples of which are obtained by reaction of [VOCl2(thf)2(H2O)] with the arsines to form green [VOCl2{o-C6H4(AsMe2)2}], [VOCl2{MeC(CH2AsMe2)3}(H2O)] and [VOCl2(Et3As)2]. Green [VOCl2(o-C6H4(PMe2)2}] is formed from [VOCl2(thf)2(H2O)] and the ligand. The [VOCl2{o-C6H4(PMe2)2}] decomposes in thf solution open to air to form the diphosphine dioxide complex [VO{o-C6H4(P(O)Me2)2}2(H2O)]Cl2, but in contrast, the products formed from similar treatment of [VCl4{o-C6H4(AsMe2)2}x] or [VOCl2{o-C6H4(AsMe2)2}] contain the novel arsenic(V) cation [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]+. X-ray crystal structures are reported for [V2Cl6{o-C6H4(AsMe2)2}2], [VO(H2O){o-C6H4(P(O)Me2)2}2]Cl2, [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]Cl·[VO(H2O)3Cl2] and powder neutron diffraction data for [VCl4{o-C6H4(AsMe2)2}2].  相似文献   

3.
Reactions of CrO2F2 with MF or MF2 gave the corresponding M2CrO2F4 and MCrO2F4 fluorochromates. With the Lewis Acids (SO3, TaF5, SbF5) and (CF3CO)2O known and new chromyl compounds [CrO2(CF3COO)2, CrO2(SO3F)2, CrO2FTaF6, CrO2FSbF6, CrO2FSb2F11] were produced. Chromyl fluoride and inorganic salts (CF3COONa and NaNO3) produced the following complexes - Na2CrO2F2(CF3COO)2 and Na2CrO2F2(NO3)2. Unusual solid products were obtained with CrO2F2 and NO, NO2, SO2.A new method of preparing CrO2F2 is also presented.  相似文献   

4.
N,N-Dimethylneopentylamine reacts with Pd(MeCO2)2 to give a novel trinuclear cyclopalladated complex [Me2NCH2CMe2CH2Pd(μ-MeCO2)2Pd(μ-MeCO2)2PdCH2CMe2CH2NMe2]?-0.5C6H6 (I). The reaction of I with PPh3 affords both trans-[Pd(MeCO2)2(PPh3)2] (II) and [Pd(CH2CMe2CH2NMe2)(MeCO2)(PPh3)] (III). The reaction of III with LiCl yields a mononuclear cyclopalladated complex, [Pd(CH2CMe2CH2NMe2)Cl(PPh3)] (IV).  相似文献   

5.
Phase ratios in the three-component oxide system K2O-V2O4-SO3 in the region of the sulfur trioxide concentrations corresponding to its concentrations in the active component of vanadium catalysts for SO2 to SO3 conversion have been studied using powder X-ray diffraction, IR spectroscopy, microscopy, and chemical analysis. Four individual compounds (K2VO(SO4)2, K2(VO)2(SO4)3, K2VO(SO4)2S2O7, and K2(VO)2(SO4)2S2O7) and K2(VO)2(SO4)2S2O7 and VOSO4-base solid solutions of composition K2(VO)2+x (SO4)2+x S2O7 (0 ≤ x ≤ 1.5) were found in the system. K2VO(SO4)S2O7 and K2(VO)2(SO4)2S2O7 lose their sulfur trioxide when heated above 350°C under an inert atmosphere, and convert to K2VO(SO4)2 and K2(VO)2(SO4)3, respectively. This implies that K2VO(SO4)2S2O7 and K2(VO)2(SO4)2S2O7, as well as K2(VO)2+x (SO4)2+x S2O7 solid solution, cannot exist in the active component of real industrial catalysts.  相似文献   

6.
The following compounds were isolated and more closely studied by means of thermal analysis, X-ray scattering and IR absorption spectra and determination of solubilities: Pr2(H2 T)3 · 6 H2O, Nd2(H2 T)3 · 6 H2O, Sm2(H2 T)3 · 5 H2O, Gd2(H2 T)3 · 5 H2O, Tb2(H2 T)3 · 5 H2O, Dy2(H2 T)3 · 5 H2O, Ho2(H2 T)3 · 5 H2O, Er2(H2 T)3 · 5 H2O, PrH5 T 2 · 2 H2O, NdH5 T 2 · 2 H2O, SmH5 T 2 · 2 H2O, GdH5 T 2 · 3 H2O, TbH5 T 2 · 3 H2O, DyH5 T 2 · 3 H2O, HoH5 T 2 · 3 H2O, ErH5 T 2 · 3 H2O.  相似文献   

7.

Abstract  

The reaction of Me2PO2H and Me2AsO2H with SbCl3, BiCl3, and Bi(NO3)3·5H2O gave the complexes Sb(Me2PO2)3, Sb(Me2AsO2)3, (Me2PO2)2Bi-Cl, Bi(Me2AsO2)3, (Me2PO2)2Bi(NO3), and (Me2AsO2)2Bi(NO3)·H2O, respectively. The arsinato complexes did not react with the Lewis bases pyridine, Ph3P, and Ph3As in acetone. The compounds Sb(Me2AsO2)3 and (Me2AsO2)2Bi(NO3)·H2O reacted to a small extent with nicotinic acid in methanol but Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x in good yields. (Me2AsO2)2Bi(NO3)·H2O in methanol quantitatively rearranged to new complexes with the same composition, [(Me2AsO2)2Bi(NO3)·H2O]′ and [(Me2AsO2)2Bi(NO3)·H2O]″ in the presence of pyridine. With thiophenol in air, Sb(Me2AsO2)3 gave PhSSPh and Me2As-SPh (1:1 mol ratio), (Me2AsO2-SbO) x and some Sb(Me2AsO2)3 was reformed, Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x , PhSSPh, and Me2As-SPh (1:0.6 mol ratio), whereas (Me2AsO2)2Bi(NO3)·H2O quantitatively gave PhSSPh, thus acting as a catalyst for the air oxidation of thiophenol.  相似文献   

8.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

9.
The photochemical reaction of piperazine with C70 produces a mono‐adduct (N(CH2CH2)2NC70) in high yield (67 %) along with three bis‐adducts. These piperazine adducts can combine with various Lewis acids to form crystalline supramolecular aggregates suitable for X‐ray diffraction. The structure of the mono‐adduct was determined from examination of the adduct I2N(CH2CH2)2NI2C70 that was formed by reaction of N(CH2CH2)2NC70 with I2. Crystals of polymeric {Rh2(O2CCF3)4N(CH2CH2)2NC70}n?nC6H6 that formed from reaction of the mono‐adduct with Rh2(O2CCF3)4 contain a sinusoidal strand of alternating molecules of N(CH2CH2)2NC70 and Rh2(O2CCF3)4 connected through Rh?N bonds. Silver nitrate reacts with N(CH2CH2)2NC70 to form black crystals of {(Ag(NO3))4(N(CH2CH2)2NC70)4}n?7nCH2Cl2 that contain parallel, nearly linear chains of alternating (N(CH2CH2)2NC70 molecules and silver ions. Four of these {Ag(NO3)N(CH2CH2)2NC70}n chains adopt a structure that resembles a columnar micelle with the ionic silver nitrate portion in the center and the nearly non‐polar C70 cages encircling that core. Of the three bis‐adducts, one was definitively identified through crystallization in the presence of I2 as 12{N(CH2CH2)2N}2C70 with addends on opposite poles of the C70 cage and a structure with C2v symmetry. In 12{I2N(CH2CH2)2N}2C70, individual 12{I2N(CH2CH2)2N}2C70 units are further connected by secondary I2???N2 interactions to form chains that occur in layers within the crystal. Halogen bond formation between a Lewis base such as a tertiary amine and I2 is suggested as a method to produce ordered crystals with complex supramolecular structures from substances that are otherwise difficult to crystallize.  相似文献   

10.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

11.
Organotin derivatives of dimethyldithioarsinic (dithocacodylic) acid have been obtained from the appropriate organotin chloride and the sodium salt of the latter. Tin(IV) chloride and NaS2AsMe2 · 2 H2O yielded only two products, namely Cl2Sn(S2AsMe2)2 and Sn (S2AsMe2)4, regardless of the reagent ratio. Spectroscopic characterization of the compounds (infrared and1H NMR) provides structural information suggesting that the dimethyldithioarsinato group behaves as monodentate (or anisobidentate) ligand in Me2Sn(S2AsMe2)2, Bu2Sn-(S2AsMe2)2 and Cy3Sn(S2AsMe2), as bidentate in Ph2Sn(S2AsMe2)2, Ph3Sn(S2AsMe2) and Cl2As(S2AsMe2)2, whereas Sn(S2AsMe2)4 contains both mono- and bidentate ligands, presumably in a six-coordinate structure.  相似文献   

12.
Inhaltsübersicht. Die Verbindungen K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2 und Cs2MnTe2 wurden durch Umsetzungen von Alkalimetall-carbonaten mit Mangan bzw. Mangantellurid in einem mit Chalkogen beladenen Wasserstoffstrom erhalten. Kristallstrukturuntersuchungen an Einkristallen ergaben, daß alle neun Verbindungen isotyp kristallisieren (K2ZnO2-Typ, Raumgruppe Ibam). Untersuchungen zum magnetischen Verhalten zeigen antiferromagnetische Kopplungen der Manganionen in den [MnX4/22–]-Ketten, On Alkali Metal Manganese Chalcogenides A2MnX2 with A K, Rb, or Cs and X S, Se, or Te The compounds K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2, and Cs2MnTe2 were synthesized by the reaction of alkali metal carbonates with Mn or MnTe in a stream of hydrogen charged with chalcogen. Structural investigations on single crystals show that all nine compounds crystallize in isotypic atomic arrangements (K2ZnO2 type, space group Ibam). The magnetic behaviour indicates antiferromagnetic interactions of the manganese ions within the [MnX1/22–] chains.  相似文献   

13.
《Polyhedron》2001,20(9-10):1107-1113
The reactions of dipropargyl manolate and terephthalate, respectively, with Co2(CO)8 in THF at room temperature gave four new compounds [R(CO2CH2C2H-μ)2][Co2(CO)6]2 (R=CH2, 1a; R=C6H4, 1b) and [(HC2CH2OCO)R(CO2CH2C2H-μ)][Co2(CO)6] (R=CH2, 2a; R=C6H4-1,4-, 2b), and compounds 2a and b reacted with RuCo2(CO)11 to form two new linked clusters [R(CO2CH2C2H-μ)2][Co2(CO)6][RuCo2(CO)9] (R=CH2, 3a; R=C6H4-1,4-, 3b). The treatment of two dipropargyl esters, respectively, with RuCo2(CO)11 afforded another two new clusters [R(CO2CH2C2H-μ)2][RuCo2(CO)9]2 (R=CH2, 4a; R=C6H4-1,4-, 4b). The reactions of dipropargyl manolate, terephalate with Mo2Cp2(CO)4 gave rise to the formation of dinuclear complexes [(HC2CH2OCO)R(CO2CH2C2H-μ)][Mo2Cp2(CO)4] (R=CH2, 5a; R=C6H4-1,4-, 5b), compound 5a reacted with Co2(CO)8 to produce the cluster [CH2(CO2CH2C2H-μ)2][Co2(CO)6][Mo2Cp2(CO)4] 6a. All the new clusters have been characterized by C/H elemental analysis, IR and 1H NMR spectroscopies. The structure of [CH2(CO2CH2C2H-μ)2][Co2(CO)6]2 1a and [p-(HC2CH2OCO)C6H4(CO2CH2C2H-μ)][Co2(CO)6] 2b have been determined by single crystal X-ray diffraction methods.  相似文献   

14.
Ten organotin derivatives with dithiocarbamates of the formulae (4‐NCC6H4CH2)2Sn(S2CNEt2)2 (1), (4‐NCC6H4CH2)2Sn(S2CNBz2)2 (2), (4‐NCC6H4CH2)2Sn[S2CN(CH2CH2)2NCH3]2 (3), (2‐ClC6H4CH2)2 Sn(S2CNEt2)2 (4), (2‐ClC6H4CH2)2Sn(S2CNBz2)2 (5), (4‐NCC6H4CH2)2Sn(Cl)S2CNEt2 (6), (4‐NCC6H4CH2)2Sn(Cl)S2CNBz2 (7), (4‐NCC6H4CH2)2Sn(Cl)S2CN(CH2CH2)2NCH3 (8), (2‐ClC6H4CH2)2 Sn(Cl)S2CNEt2 (9) and (2‐ClC6H4CH2)2Sn(Cl)S2CNBz2 (10) have been prepared. All complexes were characterized by elemental analyses, IR and NMR. The crystal structures of complexes 1 and 10 were determined by X‐ray single crystal diffraction. For complex 1, the central tin atom exists in a skew‐trapezoidal planar geometry defined by two asymmetrically coordinated dithiocarbamate ligands and two 4‐cyanobenzyl groups. In addition, because of the presence of close intermolecular non‐bonded contacts, complex 1 is a weakly‐bridged dimer. In complex 10, the central tin atom is rendered pentacoordinated in a distorted trigonal bipyramidal configuration by coordinating with S atoms derived from the dithiocarbamate ligand. In vitro assays for cytotoxicity against five human tumor cell lines (MCF‐7, EVSA‐T, WiDr, IGROV and M226) furnished the significant toxicities of the title complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The Formation of Disilylphosphino-Element Compounds of C, Si, P The reactions of (me3Si)2PLi · OR2 a (OR2 = 1 monoglyme or 2 THF; me = CH3) with CH3Cl, CH2Cl2, ClCH2CH2Cl and ClCH2? C6H5 give the compounds (me3Si)2Pme, (me3Si)2P? CH2? P(Sime3)2, (me3Si)2P? CH2CH2Cl, (me3Si)2P? CH2CH2? P(Sime3)2 and (me3Si)2P? CH2C6H5 respectively. In the same manner a reacts with me2SiCl2 in a molar ratio 1:1 to (me3Si)2P? Sime2Cl and in a molar ratio 2:1 to (me3Si)2P? Sime2? P(Sime3)2 b . The compound b decomposes to [me3SiP? Sime2]2 and (me3Si)3P at 220°C. In the reactions of a with ClP(C6H5)2 and ClPme2 the compounds (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively, are obtained. a reacts with HgCl2 to (me3Si)2P? P(Sime3)2. (me3Si)3P can be cleaved with ClP(C6H5)2 and ClPme2 yielding (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively. The 1H- and 31P-n.m.r. and mass spectroscopic data are reported.  相似文献   

16.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

17.
A cobalt‐containing monodentate phosphine [(μ2‐PPh2CH2PPh2‐κ2P)Co2(CO)4][μ2‐η2‐PhC≡CP(i‐Pr)2] 2f , was prepared from the reaction of (μ2‐PPh2CH2PPh2‐κ2P)Co2(CO)6 1 with PhC≡CP(i‐Pr)2. It was accompanied by an oxidized compound, [(μ2‐PPh2CH2PPh2‐κ2P)Co2(CO)4][μ2‐η2‐PhC≡CP(=O)(i‐Pr2)] 2fo during the chromatographic process. Further reaction of 2f with Mo(CO)6 resulted in the formation of a 2f ‐ligated molybdenum complex 4 , [(μ2‐PPh2CH2PPh2‐κ2P)Co2(CO)4][μ2‐η2‐PhC≡CP(i‐Pr2)‐κP]‐Mo(CO)5.  相似文献   

18.
The preparation of pure K3Al(C2O4)3·mH2O (2<m<3) is described. Dependent on the mode of preparation, the following were found to be contaminants of the desired product: K2C2O4·1H2O; KHC2O4; KHC2O4·H2C2O4·2H2O; H2C2O4·2H2O; different forms of aluminium oxide hydrate; K4Al2(OH)2(C2O4)4· (2+x)H2O (0.7<x<1.7) and K2Al2(H2O)2(C2O4)4· 4H2O.  相似文献   

19.
The dinuclear cobalt complex [CH2(C5H4)2][Co(PMe3)2]2 (2), which is prepared from CoCl(PMe3)3 and [CH2(C5H4)2]Li2, reacts with NH4PF6 and CH3I to form the protonated and methylated dications {[CH2(C5H4)2][CoR(PMe3)2]2}2+ (R = H, CH3). Treatment of {[CH2(C5H4)2][CoCH3(PMe3)2]2}I2 (4) with LiCH3 affords the neutral compound [CH2(C5H4)2][Co(CH3)2(PMe3)]2 (5). Ligand substitution of [CH2(C5H4)2][Co(CO)2]2 (6) with P2Me4 and 1,2-C2H4(PMe2)2(dmpe) gives the doubly-bridged complexes [CH2(C5H4)2][Co2(CO)2(μ-P2Me4)] (7) and [CH2(C5H4)2][Co2(CO)2(μ-dmpe)] (8), respectively. Similarly, [CH2(C5H4)2][Co-(CO)(PMe3)]2 (9) is obtained from the reaction of 6 with PMe3. Oxidation of 6 with iodine gives [CH2(C5H4)2][Co(CO)I2]2 (11) which is transformed via {[CH2(C5H4)2][Co(PMe2H)3]2}I4 (12) into the triply-bridged cobalt(II) complex [CH2(C5H4)2][CO2(μ-PMe2)2] (13).  相似文献   

20.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号