首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reactions of OsO4 with excess of HSC6F5 and P(C6H4X-4)3 in ethanol afford the five-coordinate compounds [Os(SC6F5)4(P(C6H4X-4)3)] where X = OCH3 1a and 1b, CH3 2a and 2b, F 3a and 3b, Cl 4a and 4b or CF3 5a and 5b. Single crystal X-ray diffraction studies of 1 to 5 exhibit a common pattern with an osmium center in a trigonal-bipyramidal coordination arrangement. The axial positions are occupied by mutually trans thiolate and phosphane ligands, while the remaining three equatorial positions are occupied by three thiolate ligands. The three pentafluorophenyl rings of the equatorial ligands are directed upwards, away from the axial phosphane ligand in the arrangement “3-up” (isomers a). On the other hand, 31P{1H} and 19F NMR studies at room temperature reveal the presence of two isomers in solution: The “3-up” isomer (a) with the three C6F5-rings of the equatorial ligands directed towards the axial thiolate ligand, and the “2-up, 1-down” isomer (b) with two C6F5-rings of the equatorial ligands directed towards the axial thiolate and the C6F5-ring of the third equatorial ligand directed towards the axial phosphane. Bidimensional 19F–19F NMR studies encompass the two sub-spectra for the isomers a (“3-up”) and b (“2-up, 1-down”). Variable temperature 19F NMR experiments showed that these isomers are fluxional. Thus, the 19F NMR sub-spectra for the “2-up, 1-down” isomers (b) at room temperature indicate that the two S-C6F5 ligands in the 2-up equatorial positions have restricted rotation about their C–S bonds, but this rotation becomes free as the temperature increases. Room temperature 19F NMR spectra of 3 and 5 also indicate restricted rotation around the Os–P bonds in the “2-up, 1-down” isomers (b). In addition, as the temperature increases, the 19F NMR spectra tend to be consistent with an increased rate of the isomeric exchange. Variable temperature 31P{1H} NMR studies also confirm that, as the temperature is increased, the a and b isomeric exchange becomes fast on the NMR time scale.  相似文献   

2.
A new organically templated pentaborate [C6N4H20]0.5[B5O6(OH)4] (1a) was prepared by reactions of triethylenetetramine (TETA) with excess boric acid in aqueous solution and characterized by elemental analysis, FTIR, TG-DTA, powder X-ray diffraction and photoluminescence spectroscopy. The structure of 1a was determined by a single-crystal X-ray diffraction. It crystallizes in the monoclinic system with space group P2(1)/c, a=9200(3) Å, b=14.121(5) Å, c=10.330(4) Å, β=91.512(4)°, V=1341.4(9) Å3, and Z=4. The luminescent properties of the compound were studied, and a green-blue luminescence occurs with an emission maximum at 507 nm upon excitation at 430 nm. The photoluminescence of 1a can be modified from green-blue to white by means of a simple heat-treatment process. The white-light-emission of sample 1c makes the pentaborate a good candidate for display and lighting applications in the white LED.  相似文献   

3.
Hydrocarbon solutions of PtPCy3(C2H4)2 (Cy = cyclohexyl) react rapidly with 8-quinolinecarboxaldehyde (1 equiv.) to yield tricyclohexylphosphine quinolinecarboxyl platinum hydride (1) and CH2CH2 (2 equiv.). Compound 1 reacts with CCl4 in hydrocarbons to give PtPCy3(NC9H6CO)Cl (2) and CHCl3. The compound PtPCy3(C2H4)2 also reacts with Ph2P(C6H4-o-CHO) and Ph2As(C6H4-o-CHO) to give PCy3PtPh2P(C6H4-o-CO)(H) (3) and PCy3PtPh2As(C6H4-o-CO)(H) (4), respectively. Compounds 1, 2, 3, and 4 were characterized by infrared and 1H NMR spectra, and the crystal structure of 3 was determined by X-ray diffraction. Crystals of 3 are monoclinic, with space group P21/n and Z = 4 with the unit cell dimensions a 9.7936(17), b 14.844(35), c 23.530(64) Å, β 91.817 (18)°, and V 3419.09(1.36) Å3. The structure is refined to final discrepancy factors of R = 0.055, and Rw = 0.064. The molecular structure of 3 is that ligating atoms are in a plane containing Pt. The position of the hydride was not located crystallographically, but the 1H NMR spectrum of 3, supports the presence of a terminal hydride that is cis to the carbonyl. The IR band of 3 at 2023 cm?1 which is assigned to ν(PtH), and the hydride cleavage reaction of 1 with CCl4, provide evidence for the PtH bond.  相似文献   

4.
Butane-2,3- (1a), pentane-2,4- (1b) and hexane-2,5-dione (1c) react with Bu2(CH2=CHCH2)SnCl in the presence of water to give monoallylated keto-ols (2a, 2b) and/or diallylated diols (3a, 3b, 3c), this depending upon the employed molar ratio [diketone]/[allyltin chloride]. Bu(CH2=CHCH2)SnCl2 reacts with neat 1c in a one-pot synthesis to give mixtures of heterocyclic compounds: 2,5-diallyl-2,5-dimethyltetrahydrofuran (4), and 3-chloro-1,5-dimethyl-8-oxabicyclo [3,2,1] octane (5). Compound 4 is also obtained in high yield from the corresponding diol 3c by cyclodehydration promoted by RSnCl3 (R = Me and Bu).  相似文献   

5.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

6.
The preparation and characterization of the substituted bis(cyclopentadienyl) zirconium dichloride complexes (η5-C5H4CMe2C9H7)2ZrCl2 (1a, b) is reported. The isomer mixture of 1a, b was treated with different reducing agents such as sodium and n-butyllithium under various reaction conditions. In these reactions CC and CH activation and cleavage reactions were observed. In combination with methylaluminoxane (MAO) 1a, b and 3 showed low activities as homogeneous ethylene polymerization catalysts and no activities towards propylene. Compounds 2 and 3 were characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

7.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

8.
Yanlong Kang 《Tetrahedron》2004,60(49):11219-11225
The use of simple calix[4]arenes 1a,b for NO2/N2O4 sensing and conversion is demonstrated, both in solution and in the solid state. Upon reacting with these gases, compounds 1a,b encapsulate reactive NO+ cations within their cavities with the formation of deeply colored (λmax∼570 nm) charge-transfer complexes 2a,b. Further functionalization of the calix[4]arene platform is reported for attachment to solid supports. Polymer-supported calixarene material 3 was prepared, which reversibly traps NO2/N2O4 with the formation of nitrosonium storing polymer 4. Material 4 was effectively used for nitrosation of amides.  相似文献   

9.
Lanthanum rhenium oxide, La3ReO8, crystallizes in the monoclinic system, space group C21 with the unit-cell dimensions a = 17.535(11), b = 11.889(7), c = 12.816(8) Å, γ = 90°, Z = 16. Single-crystal diffraction data were collected on an automatic four-circle diffractometer. The structure, determined by Patterson and Fourier methods, has been refined by full-matrix least-squares calculations to an R value of 0.09 for 4206 independent observed reflections. The presence of two superstructures along the a and b axes has made the determination of positions of oxygen atoms very difficult. It can be visualized as isolated ReO6 octahedra defining tunnels, parallel to the b axis, occupied by a double chain of edge-shared La4O tetrahedra.  相似文献   

10.
[C4H9)4N]2[Mo2O7] reacts with a variety of organic species containing α-diketone groups to give tetranuclear complexes of general composition [RMo4O15X]3−. The complexes [(C4H9)4N]3[(C9H4O)Mo4O15(OCH3)] (I), [(C4H9)4N]3[(C14H10)Mo4O15(C6H5CO2)] (11) and [(C4H9)4N]3[(C14H8)Mo4O15(OH)] (III) were synthesized from the reactions of dimolybdate with ninhydrin, benzil and phenanthraquinone, respectively. Complex II may also be prepared from dimolybdate and benzoin in acetonitrile-methanol solution, from which it co-crystallizes with the binuclear species [(C4H9)4N]2[Mo2O5(C6H5C(O)C(O)C6H5)2] · CH3CN · CH3OH (IV). Complexes I–III exhibit the tetranuclear core, previously described for the α-glyoxal derivatives [(C4H9)4N]3[(HCCH)Mo4O15X], where X = F or HCO2. The ligands may be formally described as diketals, formed by insertion of ligand carbonyl subunits into molybdenum-oxygen bonds. The structures I–III differ most dramatically in the identity and coordination mode of the anionic ligand X which occupies a position opposite the diketal moiety relative to the [Mo4O11]2+ central cage. Thus, I exhibits a doubly bridging methoxy group in this position, while II possesses a benzoate ligand with an unusual μ3-O,O′coordination mode. Complex III presents a hydroxy-group unsymmetrically bonded to three of the molybdenum centres. The stereochemical consequences of the various coordination modes are discussed. Crystal data: Compound I, monoclinic space group Pc, a = 24.888(2), b = 12.897(3), c = 24.900(3) Å, β = 101.94(2)°, Dcalc = 1.28 g cm−1 for Z = 4. Structure solution and refinement based on 8695 reflections with Fo 6σ(Fo) (Mo-Kα, λ = 0.71073 Å) converged at a conventional discrepancy factor of 0.060. Compound II, orthorhombic space group Pbca, a = 20.426(6), b = 26.916(6), c = 32.147(7) Å, V = 17673.2(20) Å3, Dcalc = 1.33 g cm−3 for Z = 8; 5224 reflections, R = 0.076. Compound III, tetragonal space group I41/a, a = b = 48.129(6), c = 13.057(2) Å, V = 30246.2(12) Å3, Dcalc = 1.35 g cm−3 for Z = 16; 5554 reflections, R = 0.053. Compound IV, orthorhombic space group Pnca, a = 16.097(4), b = 16.755(4), c = 25.986(7) Å, V = 7008.1(13) Å3, Z = 4, Dcalc = 1.18 g cm−3 ; 2944 reflections, R = 0.061.  相似文献   

11.
J. Daub  U. Erhardt 《Tetrahedron》1972,28(1):181-186
The synthesis of the hexacyclic C18H18-compound 2 and its spectroscopic and chemical properties are reported. By temperature-dependent NMR, protons H6,7 and H17,18 are shown to be differently influenced by the dynamic equilibrium 2a ? 2b. At 130°, 2 decomposes into benzene and tetracyclo-(5.3.2.02,5.06,8)dodeca-3 (4).  相似文献   

12.
Structures of C4     
Linear (1), cyclic (2) and bicyclic (3) alternatives are considered as possible ground-state structures for C4. At the highest levels of theory, MP4SDQ/6-311//HF/6-311, 3, with two π electrons is found to be most stable.  相似文献   

13.
Treatment of R2Si(CC-SiMe3)2 [1a (Me), 1b (Ph)] with HB(C6F5)2 at low temperature (253 K (a), 273 K (b)) gives the -B(C6F5)2 substituted silacyclobutene products (4a,b) under kinetic control. Upon warming to room temperature they disappear to form the thermodynamically favoured isomeric silole derivatives (2a,b). Similar treatment of Me2Si(CC-R1)2 [5a (R1 = Ph), 5b (R1 = tert-butyl) with HB(C6F5)2 at room temperature gave the stable -B(C6F5)2 substituted silacyclobutene derivatives 6 and 7, respectively. Subsequent photolysis resulted in a Z- to E-isomerization of the substituted exocyclic CC double bonds in these products. The silacyclobutene derivative E-6 was characterized by an X-ray crystal structure analysis.  相似文献   

14.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

15.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

16.
Consecutive synthesis methodologies for the preparation of carbosilanes (Ph)(Me)Si((CH2)3B(OH)2)2 (2), Si(C6H4-4-SiMe2((CH2)3B(OH)2))4 (5), (Ph)(Me)Si((CH2)3OH)2 (3), and Si(C6H4-4-SiMe3−n((CH2)3OH)n)4 (6a, n = 1; 6b, n = 2; 6c, n = 3) are reported. Boronic acids 2 and 5 are accessible by treatment of (Ph)(Me)Si(CH2CHCH2)2 (1) or Si(C6H4-4-SiMe2(CH2CHCH2))4 (4a) with HBBr2·SMe2 followed by addition of water, while 3 and 6 are available by the hydroboration of 1 or Si(C6H4-4-SiMe3−n(CH2CHCH2)n)4 (4a, n = 1; 4b, n = 2; 4c, n = 3) with H3B·SMe2 and subsequent oxidation with H2O2.The single molecular structure of 6a in the solid state is reported. Representative is that 6a crystallized in the chiral non-centrosymmetric space group P212121 forming 2D layers due to intermolecular hydrogen bond formation of the HO functionalities along the crystallographic a and c axes.  相似文献   

17.
Treatment of [(1,5-C8H12)PtCl(X)] (X=Cl, CH3, CH2CMe3) with C2 chiral cyclopentane-1,2-diyl-bis(phosphanes) C5H8(PR2)2, either as racemic mixtures or as resolved enantiomers, afforded the chelate complexes [C5H8(PR2)2Pt(Cl)(X)] (X=Cl: R=Ph (1), N-pip (2), OPh (3); X=CH3: R=Ph (4), N-pip (5), OPh (6); X=CH2CMe3: R=Ph (7), N-pip (8), OPh (9); ‘N-pip’=N(CH2)5), (+)-[(1R,2R)-C5H8{P(OPh)2}2PtCl2] [(R,R)-3], (−)-[(1S,2S)-C5H8{P(OPh)2}2PtCl2] [(S,S)-3], (−)-[(1R,2R)-C5H8(PPh2)2Pt(Cl)(X)], and (+)-[(1S,2S)-C5H8(PPh2)2Pt(Cl)(X)] (X=CH3: (R,R)-4, (S,S)-4; X=CH2CMe3: (R,R)-7, (S,S)-7). Reacting 4, 6, and 7 with AgO3SCF3 led to triflate derivatives [C5H8(PR2)2Pt(X)(OSO2CF3)] [X=CH3: R=Ph (11), OPh (12); X=CH2CMe3: R=Ph (13)] with covalently bonded OSO2CF3 ligands. The unusual Pt2 complex [μ-Cl{C5H8(PPh2)2PtCH3}2]O3SCF3 (14) containing an unsupported single Pt---Cl---Pt bridge was also isolated. In the presence of SnCl2, complexes 1, 3, 4, 6, 7, and 9 are catalysts for the hydroformylation of styrene forming 2- and 3-phenylpropanal together with ethylbenzene. Except for 1, they also catalyze the consecutive hydrogenation of the primary propanals to alcohols. High regioselectivities towards 2-phenylpropanal (branched-to-normal ratios ≥91:9) were obtained in hydroformylations catalyzed by 3 and 4, for which the influence of varied CO/H2 partial pressures, catalyst-to-substrate ratios and different reaction temperatures and times on the outcome of the catalytic reaction was also studied. When tin-modified complexes (R,R)-3, (S,S)-3, and (S,S)-4 were used as optically active Pt(II) catalysts, an only low stereoselectivity for asymmetric hydroformylation (e.e.<18%) was observed. The Pt---Sn complexes [C5H8(PR2)2Pt(CH3)(SnCl3)] [R=Ph (15), OPh (17)], resulting from SnCl2 insertion into the Pt---Cl bonds of 4 or 6, undergo rapid degradation in solution, forming mixtures composed of [C5H8(PR2)2Pt(X)(Y)] with R=Ph or OPh and X/Y=Cl/SnCl3 (16, 18), Cl/Cl (1, 3), and SnCl3/SnCl3 (19, 20), respectively. In the presence of SnCl2, triflate complex 11 also becomes a catalyst for styrene hydroformylation and consecutive hydrogenation of the aldehydes to alcohols. The crystal structures of 11 complexes — 2, 5, 7, 8, 9, 10 (the previously prepared [C5H8{P(N-pip)2}2Pt(CH2CMe3)2]), 13, 14, 16, (R,R)-3, and (S,S)-3 — were determined by X-ray diffraction.  相似文献   

18.
The effective syntheses of the enantiomerically pure C1-C17 2 and C18-C25 3 fragments as promising synthetic intermediates of bafilomycin A1, 1 have been achieved.  相似文献   

19.
Phase transitions in the elpasolite-type K3AlF6 complex fluoride were investigated using differential scanning calorimetry, electron diffraction and X-ray powder diffraction. Three phase transitions were identified with critical temperatures , and . The α-K3AlF6 phase is stable below T1 and crystallizes in a monoclinic unit cell with a=18.8588(2)Å, b=34.0278(2)Å, c=18.9231(1)Å, β=90.453(1)° (a=2accc, b=4bc, c=ac+2cc; ac, bc, cc—the basic lattice vectors of the face-centered cubic elpasolite structure) and space group I2/a or Ia. The intermediate β phase exists only in very narrow temperature interval between T1 and T2. The γ polymorph is stable in the T2<T<T3 temperature range and has an orthorhombic unit cell with a=36.1229(6)Å, b=17.1114(3)Å, c=12.0502(3)Å (a=3ac−3cc, b=2bc, c=ac+cc) at 250 °C and space group Fddd. Above T3 the cubic δ polymorph forms with ac=8.5786(4)Å at 400 °C and space group . The similarity between the K3AlF6 and K3MoO3F3 compounds is discussed.  相似文献   

20.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号