首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique bonding of indole to a metal ion has been established. Two new tridentate N ligands with a pendent indole ring gave CuI complexes 1 and 2 , the latter of which exhibits the new form of bonding between the CuI ion in a distorted tetrahedral geometry and the indole C(2)−C(3) moiety. The bond is dependent upon the length of the side chain and therefore the accessibility of the ring to the metal center.  相似文献   

2.
In order to gain new insights into the effect of the π–π stacking interaction of the indole ring with the CuII–phenoxyl radical as seen in the active form of galactose oxidase, we have prepared a CuII complex of a methoxy-substituted salen-type ligand, containing a pendent indole ring on the dinitrogen chelate backbone, and characterized its one-electron-oxidized forms. The X-ray crystal structures of the oxidized CuII complex exhibited the π–π stacking interaction of the indole ring mainly with one of the two phenolate moieties. The phenolate moiety in close contact with the indole moiety showed the characteristic phenoxyl radical structural features, indicating that the indole ring favors the π–π stacking interaction with the phenoxyl radical. The UV/Vis/NIR spectra of the oxidized CuII complex with the pendent indole ring was significantly different from those of the complex without the side-chain indole ring, and the absorption and CD spectra exhibited a solvent dependence, which is in line with the phenoxyl radical–indole stacking interaction in solution. The other physicochemical results and theoretical calculations strongly support that the indole ring, as an electron donor, stabilizes the phenoxyl radical by the π–π stacking interaction.  相似文献   

3.
高国华  张利锋  王滨燊 《催化学报》2013,34(6):1187-1191
报道了咪唑类离子液体催化吲哚和环状碳酸酯反应合成羟烷基吲哚,系统考察了反应时间、催化剂用量、反应温度和反应物比例对离子液体催化反应性能的影响.在优化的反应条件下,吲哚与碳酸乙烯酯或碳酸丙烯酯反应可高效地生成1-(2-羟乙基)吲哚、1-(2-羟丙基)吲哚及其相应的衍生物.离子液体的催化活性与离子液体中的阴离子有关,其催化活性顺序为BF4-﹤Br-﹤Cl-﹤OAc-,与阴离子的碱度顺序一致.  相似文献   

4.
A simple semiconductor gas sensor (TGS 812) is used for the on-line measurement and control of indole during the production of l-tryptophan from indole and l-serine with immobilized E. coli cells. Indole is estimated in the reactor gas space. In combination with an automatic indole supply system, a feed-batch process became possible. The indole concentration was monitored and kept within the optimal range (300–600 mg l?1). A simple gas-sensing electrode dipped in the reaction medium provides direct measurement of organic solvents and gases in the liquid. Such a system is suitable for on-line determination of ethanol (10–70 g l?1) during continuous production of ethanol with immobilized yeast cells.  相似文献   

5.
Monoterpene indole alkaloids exhibit structural diversity in herbal resources and have been developed as promising drugs owing to their significant biological activities. Confidential identification and quantification of monoterpene indole alkaloids is the key to quality control of target plants in industrial production but has rarely been reported. In this study, quantitative performance of three data acquisition modes of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry including full scan, auto-MS2 and target-MS2, was evaluated and compared for specificity, sensitivity, linearity, precision, accuracy, and matrix effect using five monoterpene indole alkaloids (scholaricine, 19-epi-scholaricine, vallesamine, picrinine, and picralinal). Method validations indicated that target-MS2 mode showed predominant performance for simultaneous annotation and quantification of analytes, and was then applied to determine monoterpene indole alkaloids in Alstonia scholaris (leaves, barks) after extraction procedures optimization using Box-Behnken design of response surface methodology. The variations of A. scholaris monoterpene indole alkaloids in different plant parts, harvest periods, and post-handling processes, were subsequently investigated. The results indicated that target-MS2 mode could improve the quantitative capability of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for structure-complex monoterpene indole alkaloids in herbal matrices. Alstonia scholaris, monoterpene indole alkaloids, quadrupole time of flight mass spectrometry, qualitative and quantitative analysis, ultra-high-performance liquid chromatography  相似文献   

6.
The present study investigates the effects of Lewis acid and protonic acid on the chemical polymerization of indole using electrical conductivity measurements and nuclear magnetic resonance, UV–visible, and Fourier transform infrared spectroscopy techniques. These effects are explained by theoretical calculations on the basis of molecular mechanic (MM+) and semi-empirical Austin Model 1 methods. As a result, it has been shown that indole interacts with proton and Lewis acids by the way of different mechanisms. Theoretical research has demonstrated that while BF3, a Lewis acid, adds to the N atom in the indole, which has a basic character due to its lone-pair electrons, proton, H+ adds to the indole ring on C3 atom. These additions affect both the polymerization of indole and the conductivity of polyindole. Polyindole conductivity is increased by BF3 addition and decreased by H+ addition.  相似文献   

7.
We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation-π interaction) and in the absence of this interaction. We found that the cation-π interaction significantly decreases the total rate of removal of singlet oxygen (kT) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m −1 s−1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m −1 s−1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation-π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.  相似文献   

8.
An efficient copper (I) halotriphenylphosphine catalyzed one-pot multicomponent reaction (MCR) of 3-substituted indole derivatives has been developed using a variety of aldehydes (aromatic, aliphatic, and heteroaromatic), indole, and active methylene substrates such as malononitrile and ethyl 2-cyano acetate. This reaction proceeds smoothly and obtained good to excellent yields (68–93%) using water as green solvent under ambient conditions. The obtained products were confirmed by 1H, 13C NMR, and mass spectroscopy techniques. The one-pot MCR occurs through formation of Knoevenagel adducts then followed by Michael addition of indole.  相似文献   

9.
The modifications under environmental perturbations of the well separated two first electronic systems of carbazole are used to demonstrate the possibility of including solute-ether complexes in polyethylene films. The application of this technique to indole allows to differentiate the overlapping 1La and 1Lb transitions in the spectrum of hydrogen bonded indole. The ground state interactions of indole, 5-methoxyindole and 3-methylindole in several well defined environment conditions (hydrogen bond in a polar cage, hydrogen bond in a nonpolar cage) are investigated through UV absorption spectroscopy between 293 and 88 K. A strong red shift of the 1La bands under the hydrogen bonding occurs with all the indoles investigated. The comparative analysis of the spectra in three types of environment, allows to give the accurate location of the first bands for the two overlapping vibronic systems of these molecules in polar media. Particularly, it is unambiguously shown that the first 1La band and the first 1Lb band of indole in alcohols are superposed at 288 nm. These results offer reliable new bases for the study of the emission properties of indole and its derivatives.  相似文献   

10.
This report describes that a regular positive electrospray ionization mass spectrometry (MS) analysis of terpendoles often causes unexpected oxygen additions to form [M + H + O]+ and [M + H + 2O]+, which might be a troublesome in the characterization of new natural analogues. The intensities of [M + H + O]+ and [M + H + 2O]+ among terpendoles were unpredictable and fluctuated largely. Simple electrochemical oxidation in electrospray ionization was insufficient to explain the phenomenon. So we studied factors to form [M + H + O]+ and [M + H + 2O]+ using terpendole E and natural terpendoles together with some model indole alkaloids. Similar oxygen addition was observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, which is corresponding to the substructure of terpendole E. In tandem MS experiments, a major fragment ion at m/z 130 from protonated terpendole E was assigned to the substructure containing indole. When the [M + H + O]+ was selected as a precursor ion, the ion shifted to m/z 146. The same 16 Da shift of fragments was also observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, indicating that the oxygen addition of terpendole E took place at the indole portion. However, the oxygen addition was absent for some terpendoles, even whose structure resembles terpendole E. The breakdown curves characterized the tandem MS features of terpendoles. Preferential dissociation into m/z 130 suggested the protonation tendency at the indole site. Terpendoles that are preferentially protonated at indole tend to form oxygen addition peaks, suggesting that the protonation feature contributes to the oxygen additions in some degrees. © 2014 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.  相似文献   

11.
A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2′-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.  相似文献   

12.
Reported is a highly chemoselective intermolecular annulation of indole‐based biaryls with bromoalkyl alkynes by using palladium/norbornene (Pd/NBE) cooperative catalysis. This reaction is realized through a sequence of Catellani‐type C?H alkylation, alkyne insertion, and indole dearomatization, by forming two C(sp2)?C(sp3) and one C(sp2)?C(sp2) bonds in a single chemical operation, thus providing a diverse range of pentacyclic molecules, containing a spiroindolenine fragment, in good yields with excellent functional‐group tolerance. Preliminary mechanistic studies reveal that C?H bond cleavage is likely involved in the rate‐determining step, and the indole dearomatization might take place through an olefin coordination/insertion and β‐hydride elimination Heck‐type pathway.  相似文献   

13.
Abstract— The decay of the indole triplet of single tryptophan-containing proteins and model compounds can be readily measured at room temperature in aqueous solution by monitoring the triplet-triplet absorption or phosphorescence emission following a 265 nm exciting laser pulse. The quenching action of acrylamide on the triplet excited state of indole side chains was studied in an analogous fashion to that previously done at the singlet level (Eftink and Ghiron, 1977). The acrylamide triplet quenching constant (tkq) ranged from a high of 7.8 times 108M-1 s-1 for the exterior indole of corticotropin (ACTH) to a low of 2 times 105 Af-1 s-1 for the interior indole of ribonuclease T, (RNase T,). The ratio (7) of these values with their respective acrylamide singlet quenching constants (tkq),(γ=tkq8Kq) ranged from a high of 0.22 for ACTH to a low of 0.001 for RNase T1,. Acrylamide is also an inefficient quencher of model indoles in various solvents (i.e. it has a γ less than 1). The magnitude of γ varied from a high of 0.3 in H20 to a low of 0.02 in acetonitrile, but did not correlate with viscosity, dielectric constant or polarity. The lower efficiency observed for internal indole groups can not be explained by that class of models which predict the presence of static quenching at the triplet level, since none was observed. The present results confirm the observation of Calhoun et al. of a large discrepancy between acrylamide's singlet and triplet quenching constants for buried indole side chains, but suggest that it may be largely explained by the fact that acrylamide is an inefficient quencher of the indole triplet state (1983). The magnitude of this inefficiency is probably determined by specific microenvironmental factors. Thus, unlike 8Kq, the environmentally sensitive lkH cannot be easily used to characterize the dynamics of proteins.  相似文献   

14.
The magnetic circular dichroism spectra of a number of indole alkaloids show two B-terms of opposite sign in the 250–330 nm wavelength region associated with the 1Lb and 1La electronic transitions, the long wavelength, 1Lb, band being of positive sign, whereas both bands strongly overlap in absorption. Various substituents in different positions of the indole ring cause a red shift of both bands and a broadening of the long wavelength B-term. The sign pattern, howver, remains unchanged in all examples thus far investigated. Dihydroindole and oxindole, on the other hand, exhibit MCD. bands with the opposite sign sequence as compared to the indole chromophore. This observation allows identification of the indole chromophore in alkaloids from the sign pattern of the MCD. bands.  相似文献   

15.
A new method is described for simultaneous determination of 3-methylindole (3MI) and indole in porcine adipose tissue. Sample preparation included liquid–liquid extraction with n-hexane and 75% aqueous acetonitrile. The acetonitrile extracts were analysed by liquid chromatography–mass spectrometry (LC–MS) using atmospheric pressure chemical ionization (APCI) with selective ion monitoring of protonated ions [M + H]+. This method showed excellent linearity over the concentration range tested (from 2 to 500 ng mL−1 for 3MI and from 1 to 500 ng mL−1 for indole) and good accuracy (recovery of 92 ± 10% for 3MI and 91 ± 10% for indole). This new LC–MS method was compared with traditional colorimetric method for 3MI equivalent. Additionally, the correlation between 3MI concentrations in adipose tissue and plasma was studied. The described LC–MS method can be used to quantify 3MI and indole in porcine adipose tissue in various endocrinological or meat science studies.  相似文献   

16.
The 13C and 1H nmr spectra of methyltryptophans 2–5 in 0.1 N sodium deuteroxide methanol-d4 were assigned based on 1-D and 2-D nmr techniques, including COSY, inverse-detected direct (HMQC) and long-range (HMBC) correlation. Methyl substituent effects in chemical shifts (SCS) for the indole ring of tryptophan were calculated and compared with those of indole. The correlations were linear except for 4-methyltryptophan, which suggest structural changes in the indole ring of 4-methyltryptophan and 4-methylindole. The results of molecular modeling and NOE experiments supported that suggestion.  相似文献   

17.
The total synthesis of the indole alkaloid (±) 20-epiuleine has been achieved starting from indole itself and the appropriate 2-cyano Δ3 piperidine 7.  相似文献   

18.
在固定床高压微反装置上考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和吲哚加氢脱氮(HDN)反应之间的相互影响。结果表明,吲哚对DBT的加氢脱硫反应具有抑制作用,其中对加氢路径(HYD)比对氢解路径(DDS)的抑制作用强,温度升高后,吲哚的抑制作用减弱。吲哚对DBT加氢脱硫反应的抑制作用源于吲哚及其HDN反应的中间产物在活性位上的竞争吸附。DBT和原位生成的H2S促进了催化剂表面硫阴离子空穴(CUS)向B酸位的转化,从而提高1,2-二氢吲哚(HIN)分子中C(sp3)—N键的断裂能力,使得吲哚的转化率和产物中邻乙基苯胺(OEA)的相对含量增大。HDN活性相的形成虽然需要硫原子的参与,但是活性相的保持并不需要大量的硫原子,较高含量硫化物存在时加氢活性位减少,不利于脱氮反应。  相似文献   

19.
Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride-malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium]+ cations associate strongly with the indole π-system due to electrostatics, whereas malic acid is only weakly associated. Trace water is sequestered into the DES and does not interact strongly with indole. When water is added to the DES, it does not interact with the indole π-system but is exclusively in-plane with the heterocyclic rings, forming strong H-bonds with the -NH group, and also weak H-bonds and thus prominent hydrophobic hydration of the indole aromatic region, which could direct selectivity in reactions.  相似文献   

20.
The ring-methylation of pyrrole or indole using supercritical methanol proceeded at 623 K without the further addition of catalysts. Pyrrole produced a mixture of unreacted pyrrole and mono-, di-, tri-, and tetra-methylpyrroles at the reaction time of 8 h. On the other hand, indole was selectively methylated at the C3 position to afford 3-methylindole in 79% yield at the reaction time of 5 h. The ring-methylation of indole using supercritical methanol was claimed to proceed via (1H-indol-3-yl)methanol. The conversion of indole to (1H-indol-3-yl)methanol would be achieved by the electrophilic aromatic substitution between the indol-1-ide (indole anion) and H2C+–OH. The (1H-indol-3-yl)methanol must be reduced to 3-methylindole in the presence of supercritical methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号