首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
A theoretical study is presented of the electronic spectra of the complexes UO(2)Cl(2)ac(4), UO(2)Cl(2)ac(3), [UO(2)Cl(3)ac(2)](-) and [UO(2)Cl(3)ac](-) (ac = acetone) using perturbation theory based on a complete-active-space type wavefunction (CASSCF/CASPT2). Both scalar relativistic effects and spin-orbit coupling were included in the calculations. The calculated excitation energies and oscillator strength values have been compared to the experimental absorption spectrum for uranyl chloride complexes in acetone solution, for chloride-to-uranyl ratios between two and three. The main purpose of this work was to investigate the origin of the remarkable intensity increase observed in the lower part of the experimental absorption spectra, upon addition of chloride to uranyl complexes in acetone. The calculated excitation energies for the different complexes are similar and closely correspond to the experimental data. However, in none of the theoretical spectra, the high intensities observed in the lower part of the experimental spectrum are reproduced.  相似文献   

2.
Mixed aggregate formation and synergistic interactions of binary surfactant mixtures of di-n-decyldimethylammonium chloride, [DiC(10)][Cl], with polyoxyethylene alkyl ethers, C(i)E(j) (i=10, 12, j=4, 6, 8), have been investigated for various [DiC(10)][Cl]/C(i)E(j) ratios. The critical aggregation concentration of the binary mixtures has been determined by tensiometry, and the aggregate characteristics (i.e., size and composition, free ammonium concentration) have been estimated using the pulsed field gradient NMR spectroscopy and a [DiC(10)]-selective electrode. Diffusion coefficient measurements of micelles confirmed the synergistic interaction between the surfactants. It is thus shown that the formation of surface monolayers and mixed aggregates from [DiC(10)][Cl]/C(10)E(j) mixtures is driven by both tail/tail and head/head interactions, whereas [DiC(10)][Cl]/C(12)E(j) co-aggregation is mainly driven by tail/tail interactions. As a consequence, the co-aggregation phenomenon notably influences the biocidal activity of [DiC(10)][Cl] on the Candida albicans fungi. In the presence of C(12)E(j), the biocidal activity of the ammonium salt is inhibited due to the trapping of the cationic surfactants in the mixed aggregates, whereas in the presence of C(10)E(j), the biocidal activity of the surfactant mixture is maintained. The mode of action is also confirmed by a faster increase in the zeta potential of a C. albicans suspension in the presence of [DiC(10)][Cl]/C(10)E(8) than in the presence of [DiC(10)][Cl]/C(12)E(8). Therefore, a judicious adjustment of the alkyl (i) and polyoxyethylene (j) chain lengths of C(i)E(j) avoids its antagonistic effect on the biocidal activity of [DiC(10)][Cl].  相似文献   

3.
The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min−1 at 300–350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g−1 h−1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.  相似文献   

4.
The effect of relative water content on the luminescence properties and speciation of Eu3+ ions in solutions of EuCl3 in the binary solvent mixture water/[BMI]Cl is presented, where [BMI]Cl is the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride. Using luminescence techniques, the binding properties of water to Eu3+ are determined for samples with mole ratios of water-to-IL ranging from 0 to 5. Very little water binds to Eu3+ at mole ratios of water-to-IL less than 1, above which binding increases rapidly with increasing water concentration. It is shown that only certain hydration numbers for Eu3+ complexes are stable in the water/IL solutions. The data presented suggest that the Eu3+ species present are [EuClx]3-x, [EuCly(H2O)3-4]3-y, [EuClz(H2O)6]3-z, and [Eu(H2O)8-9]3+ (where x > y > z). Comparison of the positions of the 5D0<--7F0 transitions of the Eu3+ complexes in IL solution with those of model crystal systems provides insight into the extent of Cl- complexation. This study suggests that [BMI]Cl is a promising medium for luminescent lanthanide (Ln) compounds due to the low-energy phonon environment of the [LnClx]3-x complex and to the fact that moderate water contamination does not result in direct binding of water to Ln3+, which would result in luminescence quenching.  相似文献   

5.
A deep-eutectic solvent with the properties of an ionic liquid is formed when choline chloride is mixed with copper(II) chloride dihydrate in a 1:2 molar ratio. EXAFS and UV-vis-near-IR optical absorption spectroscopy have been used to compare the coordination sphere of the cupric ion in this ionic liquid with that of the cupric ion in solutions of 0.1 M of CuCl(2)·2H(2)O in solvents with varying molar ratios of choline chloride and water. The EXAFS data show that species with three chloride ions and one water molecule coordinated to the cupric ion as well as species with two chloride molecules and two water molecules coordinated to the cupric ion are present in the ionic liquid. On the other hand, a fully hydrated copper(II) ion is formed in an aqueous solution free of choline chloride, and the tetrachlorocuprate(II) complex forms in aqueous choline chloride solutions with more than 50 wt % of choline chloride. In solutions with between 0 and 50 wt % of choline chloride, mixed chloro-aquo complexes occur. Upon standing at room temperature, crystals of CuCl(2)·2H(2)O and of Cu(choline)Cl(3) formed in the ionic liquid. Cu(choline)Cl(3) is the first example of a choline cation coordinating to a transition-metal ion. Crystals of [choline](3)[CuCl(4)][Cl] and of [choline](4)[Cu(4)Cl(10)O] were also synthesized from molecular or ionic liquid solvents, and their crystal structures were determined.  相似文献   

6.
The photodissociation of propargyl chloride (C3H3Cl) has been studied at 193 nm. Ion imaging experiments with state-selective detection of the Cl atoms and single-photon ionization of the C3H3 radicals were performed, along with measurements of the Cl + C3H3 and HCl + C3H2 recoil kinetic energy distributions, using a scattering apparatus with electron bombardment ionization detection to resolve the competing Cl and HCl elimination channels. The experiments allow the determination of the Cl (2P3/2) and Cl (2P1/2) (hereafter Cl) branching fractions associated with the C-Cl bond fission, which are determined to be 0.5 +/- 0.1 for both channels. Although prior translational spectroscopy studies by others had concluded that the low velocity signal at the Cl+ mass was due to daughter fragments of the HCl elimination products, the present work shows that Cl atoms are produced with a bimodal recoil kinetic energy distribution. The major C-Cl bond fission channel, with a narrow recoil kinetic energy distribution peaking near 40 kcal/mol, produces both Cl and Cl, whereas the minor (5%) channel, partitioning much less energy to relative kinetic energy, produces only ground spin-orbit state Cl atoms. The maximum internal energy of the radicals produced in the low-recoil-kinetic-energy channel is consistent with this channel producing electronically excited propargyl radicals. Finally, in contrast to previous studies, the present work determines the HCl recoil kinetic energy distribution and identifies the possible contribution to this spectrum from propargyl radicals cracking to C3+ ions in the mass spectrometer.  相似文献   

7.
Chloride ion catalyzes the reactions of HOBr with bromite and chlorite ions in phosphate buffer (p[H(+)] 5 to 7). Bromine chloride is generated in situ in small equilibrium concentrations by the addition of excess Cl(-) to HOBr. In the BrCl/ClO(2)(-) reaction, where ClO(2)(-) is in excess, a first-order rate of formation of ClO(2) is observed that depends on the HOBr concentration. The rate dependencies on ClO(2)(-), Cl(-), H(+), and buffer concentrations are determined. In the BrCl/BrO(2)(-) reaction where BrCl is in pre-equilibrium with the excess species, HOBr, the loss of absorbance due to BrO(2)(-) is followed. The dependencies on Cl(-), HOBr, H(+), and HPO(4)(2)(-) concentrations are determined for the BrCl/BrO(2)(-) reaction. In the proposed mechanisms, the BrCl/ClO(2)(-) and BrCl/BrO(2)(-) reactions proceed by Br(+) transfer to form steady-state levels of BrOClO and BrOBrO, respectively. The rate constant for the BrCl/ClO(2)(-) reaction [k(Cl)(2)]is 5.2 x 10(6) M(-1) s(-1) and for the BrCl/BrO(2)(-) reaction [k(Br)(2)]is 1.9 x 10(5) M(-1) s(-1). In the BrCl/ClO(2)(-) case, BrOClO reacts with ClO(2)(-) to form two ClO(2) radicals and Br(-). However, the hydrolysis of BrOBrO in the BrCl/BrO(2)(-) reaction leads to the formation of BrO(3)(-) and Br(-).  相似文献   

8.
Indium (In) was recovered from indium oxide (In2O3) and liquid crystal display (LCD) powder via a chloride volatilization process using polyvinyl chloride (PVC) as the chlorination agent. The recovery of In from In2O3 increased with an increasing molar Cl/In ratio in N2 and air atmospheres. The degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 °C was 98.7% and 96.6%, for N2 and air, respectively. The In recovery also increased notably with increasing temperature in N2 atmosphere. In both atmospheres, the In recovery increased with an increasing degradation temperature of PVC. However, the In recovery from LCD powder was lower than that from In2O3. For LCD powder, the degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 °C was 66.7% and 54.1%, for N2 and air, respectively.  相似文献   

9.
Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl(-)+RCl (R=Me and t-Bu) surrounded by one hundred H(2)O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R=t-Bu on the free-energy surface is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R=Me system that proceeds as a typical S(N)2 reaction.  相似文献   

10.
To establish the effect of the nature of supporting electrolytes KCl; K, Na/Cl; K, Na, Cs/Cl; and K, Na, Ba/Cl on the electrochemical deposition of yttrium from melts, the electroreduction of yttrium fluoride in the said melts is studied by a linear voltammetry method. The discharge of ions Y3+ in all the melts occurs via one stage. The diffusion coefficients, activation energy, product of transfer coefficients and the number of electrons n , diffusion layer thickness, diffusion constant, and rate constant of charge transfer are determined.Translated from Elektrokhimiya, Vol. 41, No. 1, 2005, pp. 48–53.Original Russian Text Copyright © 2005 by N. Gasviani, Dzhaparidze, Kipiani, S. Gasviani, Abazadze.  相似文献   

11.
The mechanisms and dynamics studies of the OH radical and Cl atom with CF(3)CHClOCHF(2) and CF(3)CHFOCHF(2) have been carried out theoretically. The geometries and frequencies of all the stationary points are optimized at the B3LYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. For each reaction, two H-abstraction channels are found and four products (CF(3)CHFOCF(2), CF(3)CFOCHF(2), and CF(3)CHClOCF(2), CF(3)CClOCHF(2)) are produced during the above processes. The rate constants for the CF(3)CHClOCHF(2)/CF(3)CHFOCHF(2) + OH/Cl reactions are calculated by canonical variational transition-state theory (CVT) within 200-2000 K, and the small-curvature tunneling is included. The total rate constants calculated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained. Our calculation shows that the substitution of Cl by F decreases the reactivity of CF(3)CHClOCHF(2) toward OH and Cl. In addition, the mechanisms of subsequent reactions of product radicals and OH radical are further investigated at the G3(MP2)//B3LYP/6-311G(d,p) level, and the main products are predicted in the this article.  相似文献   

12.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

13.
Coal-tar pitch(CP)is a promising carbon raw material for producing needle coke,carbon fiber etc.During processing,the H/C ratio,ash content,and quinoline insoluble(QI)in the CP are the key factors that influence the material preparation.In this study,NMP was selected to extract CP first;then[BMIM]Cl/NMP mixed solvent was used;and finally a series of ionic liquids(ILs)mixtures with NMP were developed for the extraction of CP to obtain the refined pitch.The extracts were analyzed via elemental analysis,TGA,FT-IR,and 13C-NMR.Results indicate that different NMP/IL mass ratios or different kinds of ILs have impact on the extraction yield.The relationship of the hydrogen to carbon(H/C)ratio changed with different solvents and QI extracts were obtained.Results showed that the H/C ratios changed little between NMP extracts and could be adjusted by changing the NMP/ILs mass ratio or using different ILs.The extracts are suitable for preparation mesophase pitch because of no ash content,low QI,and appropriate H/C ratios.As a result,NMP can be used to refine pitch.In addition,[BMIM]Cl is good mixed with NMP for CP extraction,because it can obtain a relatively high yield under the same extraction conditions.  相似文献   

14.
The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.  相似文献   

15.
The emission of M2X+ cluster ions in thermal ionization mass spectrometry when graphite is loaded on the heating filaments was studied. The emission model of non-reductive thermal ionization of graphite was preliminarily discussed and factors influencing the thermal emission of M2X+ ions were investigated. The results show that the intensities of M2X+ cluster ions are related to ionic radius and crystal lattice energy, and possibly also to the solvation energies of ions. The intensities of M2Cl+ (M stands for K, Rb, and Cs) cluster ions, the M2Cl+/M+ ratios, and the 37Cl/35Cl ratios determined from M2Cl+ ion measurement usually increase with measurement time. The variation of the 37Cl/35Cl ratios determined from Cs2Cl+ ion measurement is lower than those based on K2Cl+ and Rb2Cl+ ion measurement, indicating the lowest isotopic fractionation.  相似文献   

16.
The photooxidation of allyl chloride was studied by irradiation either in 100-L Teflon bags or in a 22.7-m3 Teflon smog chamber in the presence of added NOx. In the absence of added hydrocarbons, the reaction involves a Cl atom chain, which leads to a highly reactive system. A reaction mechanism is presented to account for the following photooxidation products: chloroacetaldehyde, formaldehyde, 1,3-dichloroacetone, 3-chloroacrolein, acrolein, glyoxal, chloroperoxyacetyl nitrate, and peroxypropenyl nitrate. The rate constant for OH reaction with allyl chloride at 298 K was measured by a relative rate method under conditions where the Cl atom chain length was small and was found to be kOH = 1.7 × 10?11 cm3 molecule?1 s?1. The rate constant for O3 reaction with allylchloride at 298 K was found to be kO3 = 1.5 × 10?18 cm3 molecule?1 s?1.  相似文献   

17.
As a case study, the energy landscape of the cesium chloride/lithium chloride system was investigated by combining theoretical and experimental methods. Global optimization for many compositions of this quasi-binary system gave candidates for possible modifications that constitute promising targets for subsequent syntheses based on solid-state reactions. Owing to the synergetic and complementary nature of the computational and experimental approaches, a substantially better efficiency of exploration was achieved. Several new phases were found in this system, for the compositions CsLiCl(2) and CsLi(2)Cl(3), and their thermodynamic ranking with respect to the already-known phases was clarified. In particular, the new CsLiCl(2) modification was shown to be the low-temperature phase, whilst the already-known modification for this composition corresponded to a high-temperature phase. Based on these results, an improved cesium chloride/lithium chloride phase diagram was derived, and this approach points the way to more rational and more efficient solid-state synthesis.  相似文献   

18.
本文研究了氯丁二烯(CP)与丙烯酸甲酯(MA)在AlEt_(1.5)Cl_(1.5)和Mn_2(CO)_(10)/CCl_4存在下的交替共聚反应。共聚速度正比于MA-AlEt_(1.5)Cl_(1.5)络合物的浓度和引发剂浓度平方根,而与单体浓度无关。所有动力学数据符合交替共聚的交叉增长机理。AlEt_(1.5)Cl_(1.5)明显地加速——CP·与MA的增长速度,从而引起交替,单体竞聚率r_(CP)和r_(MA)分别由11.1和0.078下降到0.072和0.062。 也观察了向CBr_4的链转移,并求出了一些动力学参数。  相似文献   

19.
To solve the inherent disadvantages in conventional processes for electrodeposition of zinc, it’s necessary to develop more high-efficiency and environmentally friendly electrolytes. In this work, it was found that the dissolution of ZnO was remarkably enhanced in some imidazolium chloride by the addition of urea, and the solubility of ZnO in 1:1 [Amim]Cl/urea mixture was as high as 8.35 wt% at 373.2 K. Electrochemical measurements showed that zinc could be readily electrodeposited from the solutions of ZnO. Bright, dense and well adherent zinc coatings with good purity were obtained from 0.6 M solution of ZnO in 1:1 [Amim]Cl/urea at 323.2 343.2 K. It’s expected that the solutions of ZnO in imidazolium chloride/urea mixtures have the potential to replace the traditional electrolytes, especially toxic zinc chloride-based ones for zinc electroplating, as well as preparation of zinc materials.  相似文献   

20.
The unimolecular dissociation of isopropyl chloride cation has been investigated using mass-analyzed ion kinetic energy spectrometry. The C3H6*+ ion was the only product ion in the metastable dissociation. The kinetic energy release distribution for the HCl loss was determined. Ab initio molecular orbital calculations were performed at the MP2/6-311++G(d,p) level together with single point energy calculations at the QCSID(T)/6-311++G(2d,2p) level. The calculations show that the molecular ion rearranges to an ion-dipole complex prior to loss of HCl via a transition state containing a four-membered ring. The rearrangement involves H atom transfer. On the basis of the potential energy surface obtained for the loss of HCl and Cl*, the rate constants were calculated by transition-state statistical theories with considering tunneling effect. From the calculated result, it is proposed that the observed HCl loss would occur via tunneling through the barrier for isomerization to the ion-dipole complex, CH3CHCH2*+...HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号