首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Zusammenfassung Ausgehend von nahezu äquivalenten Mengen an Na und KCl werden die Gleichgewichtszusammensetzungen der metallreichen und der salzreichen Phase des Systems NaCl–KCl–Na–K im Bereich von 1140 bis 1240° K ermittelt. Die Gleichgewichtskonzentrationen der Komponenten werden zur Berechnung der GleichgewichtskonstantenK x in beiden Phasen herangezogen.
The equilibrium compositions of both metal-rich and salt-rich phases of the system NaCl–KCl–Na–K are investigated in the temperature range from 1140 to 1240° K, starting from nearly equivalent amounts of Na and KCl. From the experimentally determined concentrations the equilibrium constantsK x were calculated.


Mit 1 Abbildung  相似文献   

2.
Differential scanning calorimetry (DSC) measurements were performed over the temperature range 93–480 K and three enantiotropic (at 323, 409, and 461 K) and one monotropic (at 271 K) phase transitions were detected. Thus, four solid phases (three of them stable and one metastable) and one liquid phase were found. It was concluded, from the entropy change (ΔS) values of these phase transitions that two of them are stable rotational phases and two are crystalline phases (one stable and one metastable). The thermal decomposition of [Mg((CH3)2SO)6](ClO4)2, which was studied using thermogravimetry (TG) with simultaneous differential thermal analysis (SDTA), takes place in two main stages. The gaseous products of the decomposition were identified on-line by a quadruple mass spectrometer (QMS). In the first stage, which starts just above ca. 432 K, the compound loses two dimethylsulphoxide (DMSO) molecules per one formula unit. In the second stage (502–673 K) [Mg(DMSO)4](ClO4)2 decomposes explosively and Cl2, O2, H2, and MgSO4 are finally produced.  相似文献   

3.
The molecular structures of potassium tetrakis(hexafluoroacetylacetonato)lanthanide(III) complexes [KLn(hfa)4] (Ln=La, Gd, Lu; hfa=C5HF6O2,) were studied by synchronous gas-phase electron diffraction/mass spectrometry (GED/MS) supported by quantum-chemical (DFT/PBE0) calculations. The compounds sublime congruently and the vapors contain a single molecular species: the heterobinuclear complex [KLn(hfa)4]. All molecules are of C1 symmetry with the lanthanide atom in the center of an LnO8 coordination polyhedron, while the potassium atom is coordinated by three ligands with formation of three K−O and three K−F bonds. One hfa ligand is not bonded to the potassium atom. Topological analysis of the electron-density distributions confirmed the existence of ionic-type K−O and K−F bonding. The structures of the free [KLn(hfa)4] molecules are compared with those of the related compounds [KDy(hfa)4] and [KEr(hfa)4] in their crystalline state. The complex nature of the chemical bonding is discussed on the basis of electron-density topology analyses.  相似文献   

4.
Synthesis and Structure Analysis of (i-Pr)2NB(t-BuP)3 and (i-Pr)2NB(t-BuP)4 The diphosphide K(t-Bu)P-(t-BuP)2-P(t-Bu)K obtained by the cleavage reaction of the 3-membered ring system (i-Pr)2BN(t-BuP)2 with potassium reacts with t-BuPCl2 at ?78°C under ring expansion to form the P3B ring system (i-Pr)2NB(t-BuP)3 – 1,2,3-tri-t-butyl-tri-phospha-4-diisopropyl-aminoboretane ( 1 ). – The 5-membered P4B ring system (i-Pr)2NB(t-BuP)4 – 1,2,3,4-tetra-t-butyl-tetraphospha-5-diisopropylaminoborolidine, ( 2 ) – is formed from K(t-Bu)P? (t-BuP)2? P(t-Bu)K and (i-Pr)2NBCl2 analogous to the above reaction. 1 and 2 could be obtained in a pure form and characterized NMR spectroscopically and by X-ray structure analysis. 1 shows at 200 K two conformation isomers; for 2 31P-10,11B-isotopic shifts could be identified.  相似文献   

5.
Thermal decomposition of cobalt hexa(formato)ferrate(III) decahydrate, Co3[Fe(HCOO)6]2. 10H2O, has been studied up to 973 K in static air atmosphere, employing TG, DTG, DSC, XRD, ESR, Mössbauer and infrared spectroscopic techniques. Dehydration occurs in two stages in the temperature range of 340–430 K. Immediately after the removal of the last water molecule the anhydrous complex undergoes decomposition till α-Fe2O3 and cobalt carbonate are formed at 588 K. In the final stage of remixing of cations, a solid state reaction between α-Fe2O3 and cobalt carbonate leads to the formation of CoFe2O4 at a temperature (953 K) much lower than for the ceramic method. A saturation magnetization value of 2310 Gauss of ferrite (CoFe2O4) shows its potential to function at high frequencies.  相似文献   

6.
A new complex compound, [K2(18-crown-6)2[K(18-crown-6)(EtOH)]2[Er(NCS)6](SCN) (I), was synthesized and its crystal structure was studied by X-ray diffraction. In this work, the synthes and X-ray difraction stady of the crystals of a new complex, hexakis (isothiocyanato) erbiu(III) thiocyanate bis(18-crown-6) dipotassium bis(18-crown-6) ethanolpotassium], [K2(18-crown-6)2][K(18-crown-6)(ETON)]2[Er(NCS)6(SCN)(I)] are described. In crystal I, the alternating [Er(NCS)6]3? anions and binuclear complex cation [K(18-crown-6)2]2+ from infinite chains via the F-S bonds, while two complex cations [K(18-crown-6)(ETON)]+ and the statistically disordered SCN? anion between them are linked by the hydragen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2)]2+ and [K(18-crown-6)(ETON)]+ [1]. The alternating octabedral [Er(NCS)6]3? anions and binuclear complex cations [K2(18-crown-6)2]2+of crystal I form infinite chains via the K-S bonds, while two complex cations [K(18-crown-6)(EtOH)]+ and the statistically disordered SCN? anion lying between them are linked by interionic hydrogen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2]2+ and [K(18-crown-6)(EtOH)]+ [1].  相似文献   

7.
The complexes Mn(II), Co(II), Ni(II) and Zn(II) with 4-oxo-4H-1-benzopyran-3-carboxaldehyde were synthesized and characterized by elemental analysis, infrared and UV spectroscopy, X-ray diffraction patterns, magnetic susceptibility, thermal gravimetric analysis, conductivity and also solubility measurements in water, methanol and DMF solution at 298 K. They are polycrystalline compounds with various formula and different ratio of metal ion:ligand. Their formula are following: [MnL2(H2O)](NO3)2·2H2O, [CoL2](NO3)2·3H2O, [NiL2](NO3)2·3H2O, [CuL2](NO3)2·H2O and [ZnL3](NO3)2, where L = C10H6O3. The coordination of metal ions is through oxygen atoms present in 4-position of γ-pyrone ring and of aldehyde group of ligand. Chelates of Mn(II), Co(II), Ni(II) and Cu(II) obey Curie–Weiss law and they are high-spin complexes with the weak ligand fields. The thermal stability of analyzed complexes was studied in air at 293–1,173 K. On the basis of the thermoanalytical curves, it appears that thermal stability of anhydrous analysed chelates changed following: Cu (423 K) < Zn (438 K) ~ Co (440 K) < Ni (468 K). The gaseous products of thermal decomposition of those compounds in air atmosphere are following: CO2, CO, NO2, N2O, hydrocarbons and in case of hydrates also water. The molar conductance data confirm that the all studied complexes are 1:2 electrolytes in DMF solution.  相似文献   

8.
Tetraphenylcyclobutadienepalladium dichloride reacts with 1,2,3,4-tetraphenyl-1,4-dilithiumbutadiene or with sodium with abstraction of halide to give the sandwich compound bis(tetraphenylcyclobutadiene)palladium(0). The structure of the latter is elucidated by spectroscopic methods and its reactions with Br2, H2, K and HNO3 are described.  相似文献   

9.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

10.
The gas permeability and sorption of CO2 and N2O was measured on cardo-poly(ether-ether-ketone) (C-PEEK) and poly(phenylene sulfide) (PPS) at 298 K. The results are discussed on the basis of the dual-mode model. Results obtained from measurements at 308 K are compared with literature data of poly(phenylene oxide) (PPO), poly(sulfone) (PSU) and poly(carbonate) (PC). While C-PEEK shows similar transport properties as PC and PSU, the values of PPS are distinctly lower. The solubility of CO2 in the various polymers as well as the correlation of the permeability coefficients of the same polymers for He, Ar, CO2, N2, and CH4 with the kinetic molecular diameter of the gases indicate a simple relation of the transport properties with the polymer density.  相似文献   

11.
Specific-heat measurements on the cluster compound Au55(P(C6H5)3)12Cl6 at temperatures 0.06 K ≤T≤3 K and in magnetic fields 0≤B≤6 T are reported. While above 0.6 K the specific heatC is dominated by the inter-cluster vibrational contribution observed previously, an anomalous increase ofC towards lowT is observed below 0.3 K, withCT ?2. This contribution develops into a Schottky-like anomaly forB≥0.4 T, indicating that it might be attributed to local moments which are also observed in ESR measurements. From the height of the anomaly one can infer that approximately one tenth of the Au55 clusters carry a magnetic moment. For 0.6 K≤T≤1 K andB=0 our data indicate the absence of a linear electronic specific-heat contribution expected for bulk Au. This possibly constitutes the first direct observation of the quantum-size effect on electronic energy levels in the specific heat.  相似文献   

12.
The tetrafluoroborate of hexadimethylsulfoxidenickel(II) was synthesized and studied by differential scanning calorimetry. Seven solid phases of [Ni(DMSO)6](BF4)2 were revealed. Specifically, six phase transitions of the first order were detected between the following solid phases: stable KIb → stable KIa at T C6 = 335 K, metastable KIIb → metastable KIIa at T C5 = 368 K, metastable KIII → overcooled phase KI at T C4 = 378 K, metastable KIIa → overcooled phase KI at T C3 = 396 K, stable KIa → stable KI at T C2 = 415 K and stable KI → stable K0 at T C1 = 433 K. [Ni(DMSO)6](BF4)2 begins decomposition at 440 K with loss of one DMSO molecule per formula unit forming [Ni(DMSO)5](BF4)2 (phase L0) which melts next in two steps in the temperature range 550–593 K. From the entropy changes connected both with melting and with phase transitions, it can be concluded that phases KI, overcooled KI and K0 are orientationally dynamically disordered (ODIC) crystals. Stable phases KIb, KIa and metastable phase KIII are ordered solid phases. Metastable phase KIIa and metastable phase KIIb are more or less ordered solid phases.  相似文献   

13.
Thermal decomposition of cobalt hexa(formato)ferrate(III) decahydrate, Co3[Fe(HCOO)6]2. 10H2O, has been studied up to 973 K in static air atmosphere, employing TG, DTG, DSC, XRD, ESR, Mössbauer and infrared spectroscopic techniques. Dehydration occurs in two stages in the temperature range of 340–430 K. Immediately after the removal of the last water molecule the anhydrous complex undergoes decomposition till -Fe2O3 and cobalt carbonate are formed at 588 K. In the final stage of remixing of cations, a solid state reaction between -Fe2O3 and cobalt carbonate leads to the formation of CoFe2O4 at a temperature (953 K) much lower than for the ceramic method. A saturation magnetization value of 2310 Gauss of ferrite (CoFe2O4) shows its potential to function at high frequencies.  相似文献   

14.
The compound K[Au(CN)2(N3)2] was synthetised starting from K[Au(CN)2Cl2] and KN3. The composition of the new complex ion was established spectrophotometrically, by the mole ratio method. The spectra, in visible, UV and IR domains are discussed. Some properties of the compound are also described.  相似文献   

15.
Single crystal orthoaxial absorption spectra are reported for tris(1,3-diphenyl-1,2-propanedionato)aquoeuropium(III) at ambient temperature and 77 K. The hypersensitive 7Fo5D2 and magnetic/electric dipole forbidden 7Fo5Do transitions are found to be unusually intense. Polarizations and absolute oscillator strengths are determined for all observed transitions from the ground state at 77 K.  相似文献   

16.
Radiative lifetimes and total deactivation cross sections of K(72S) and K(52D) by collision with NO are studied. The K atomic vapor in either the 72S or the 52D state was prepared by two- photon absorption using a dye laser. The decay signal of the time-resolved fluorescence from the 72S – 42P1/2 or 52D – 42P3/2 transition was then monitored. Based on a Stern-Volmer analysis, the radiative lifetimes are 155 ±8 ns and 561 ± 18 ns for the K(72S) and K(52D) states, respectively. The total deactivation cross sections are 88 ±1Å2 and 70 ±2Å2 for the K(72S)-NO and K(52D)-NO collisions, respectively. In the absence of NO collisions the radiative lifetimes obtained in this work show excellent agreement with those previously reported. The quenching cross sections for NO have been measured for the first time, and have values in a reasonable range, when compared with Na-N2 collisions.  相似文献   

17.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes [M=CoII, NiII, CuII or ZnII; A=iminodiacetic acid (ida),N-methyliminodiacetic acid (Me-ida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta), 2,2-bipyridine (bipy), orthophenanthroline (o-phen); HL =acetohydroxamic acid] have been determined at 25°C at an ionic strength of 0.1M KNO3 by the Iriving Rossotti technique. In the case of aminopolycarboxylic acids as primary ligands, there is always a lowering of K MAL MA from K ML M and K 2 ML while in the case of heteroaromaticN-bases as primary ligands, the values of K MAL MA are very close to those of K ML M . In the ternary systems studied, the values of K MAL MA are in the sequence, K M(o-phen) M(o-phen) >K M(bipy)L M(bipy) K M(ida)L M(ida) >K M(Me-ida)L M(Me-ida) >K M(nta)L M(nta) >K M(ada)L M(ada) , while in the case of CuII, the values of M M(nta)L M(nta) and K M(ada)L M(ada) are drastically reduced compared to all other primary ligands. For aminopolycarboxylic acids, the sequence of K MAL MA is opposite to those of K MA M and K MAL M though in the sequence of K MA M , K MAL M and K MAL MA for A=ada and nta their relative positions are unaltered. The obtained results are explained in the light of different astatistical factors such as electrostatic effects, steric hindrance, change of effective positive charge on the central metal depending upon the -basic and -acidic character of the primary ligands.  相似文献   

18.
Summary Reaction of [OsX6]2– (X = Cl or Br) with HK [HK = PhC(=O)C(=NOH)R; R=H, Me or Ph] yielded osmium(III) complexes of the type [OsX2(K)(HK)]. The OsX2 group wastrans and the hydrogen-bonded (K)(HK) moiety behaved as a planar tetradentate N2O2 chelator. The complexes were one-electron paramagnets and exhibited characteristic osmium(III) e.p.r. spectra. Several spin-allowed and spin-forbidden charge-transfer transitions were observed in the 200–1300 nm region.  相似文献   

19.
The heat capacities of Na2Tb(MoO4)(PO4) and K2Tb(MoO4)(PO4) were measured by adiabatic calorimetry at low temperatures (6.34–333.74 and 7.20–341.17 K, respectively). Smoothed thermal-capacities values were used to calculate the entropy, enthalpy increments, and reduced Gibbs energy. The respective values at 298.15 K are as follows: for Na2Tb(MoO4)(PO4), C p 0 (298.15 K) = 240.1 ± 0.2 J/(K mol), 0 (298.15 K) = 307.4 ± 0.4 J/(K mol), H 0(298.15 K) ? H 0(0) = 44.95 ± 0.03 kJ/mol, and Φ0(298.15 K) = 156.6 ± 0.5 J/(K mol); and for K2Tb(MoO4)(PO4): C p 0 (298.15 K) = 245.1 ± 0.1 J/(K mol), S 0(298.15 K) = 322.9 ± 0.1 J/(K mol), H 0(298.15 K) ? H 0(0) = 46.58 ± 0.02 kJ/mol, and Φ0(298.15 K) = 166.6 ± 0.2 J/(K mol). The noncooperative magnetic component of the heat capacity was estimated.  相似文献   

20.
Result of a study of how antimony trifluoride and fluoride complexes MSb2F7 (M = K, Rb, Cs, Tl, NH4), MSbF4 (M = Na, K, Rb, Cs, NH4), and M2SbF5 (M = Na, K, Rb, Cs, Tl, NH4) affect the growth of associations of marine bacteria and vital activity of marine alga Ulva Fenestrata are presented. The possible ways of using Sb(III) fluoride compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号