首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (alkyl)-bis(dimethylglyoximato)pyridinecobalt attached to polychloromethylstyrene by a cobalt–carbon bond was prepared by the reaction of Co(II)(DH)2Py with polychloromethylstyrene in benzene. The fraction of p-vinylbenzyl·Co(DH)2Py introduced to the polymer was 8.1 and 2.1 mole %. The photodecomposition of the polymer-bonded cobaloxime was investigated by following the change of the visible spectrum. The rate constant kdec of the polymer-bonded cobaloxime was 1.1 × 10?2 sec?1 in benzene; it is one-fourth of that of its monomeric analog, benzyl·Co(DH)2Py. The kdec values of the cobaloximes were also measured in benzene–dimethyl sulfoxide mixed solvents, and the polymer effects were discussed. The dependence of the photodecomposition on energy of the irradiation light was investigated, and it was found that the absorption band near 470 nm is important for the photodecomposition of the cobalt–carbon bond. Spectroscopic measurements of the ligand exchange reaction of polymer-bonded cobaloxime with pyridine in dimethyl sulfoxide gave a larger equilibrium constant (1.2 × 104 liter/mole) than that of benzyl·Co(DH)2Py (9.4 × 102 liter/mole). The kinetic data of the ligand exchange reaction indicated that the larger equilibrium constant for the polymeric system is due to the smaller rate constant of the reverse reaction. The thermodynamic parameters were also obtained.  相似文献   

2.
The pressure-jump method has been used to determine the rate constants for the formation and dissociation of nickel(II) and cobalt(II) complexes with cinchomeronate in aqueous solution at zero ionic strength. The forward and reverse rate constants obtained are kf = 2.27 × 106 M?1 s?1 and kr = 3.81 × 101 s?1 for the nickel(II) complex and kf = 1.23 × 107 M?1 s?1 and kr = 2.66 × 102 s?1 for the cobalt(II) complex at 25°C. The activation parameters of the reactions have also been obtained from the temperature variation study. The results indicate that the rate determining step of the reaction is a loss of a water molecule from the inner coordination sphere of the cation for the nickel(II) complex and the chelate ring closure for the cobalt(II) complex. The influence of the pyridine ring nitrogen atom of the cinchomeronate ligand on the complexation of cobalt(II) ion is also discussed.  相似文献   

3.
The 1D chain red luminescent europium coordination polymer: {[Eu2L6(DMF)(H2O)] · 2DMF · H2O}n ( I ) (L = 4‐chloro‐cinnamic acid anion, C9H6ClO2, DMF = N, N‐dimethylformamide) was synthesized by the reaction of Eu(OH)3 and 4‐chloro‐cinnamic acid ligand. The structure of the coordination polymer was determined by single‐crystal X‐ray diffraction analysis. It reveals that there exists two crystallographically nonequivalent europium atoms in each unit of this coordination polymer and Eu3+ ions are connected by two alternating bridging modes to form an endless polymer structure. The luminescent properties and energy transfer process in the complex are investigated at room temperature.  相似文献   

4.
In the title PbII coordination polymer, [Pb(C16H10O4)(C14H8N4)(C3H7NO)]n, each PbII atom is eight‐coordinated by two chelating N atoms from one pyrazino[2,3‐f][1,10]phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4′‐ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring PbII centres through four typical Pb—O bonds and one longer Pb—O interaction to form a two‐dimensional structure. The C atoms from the L and eedb ligands form C—H...O hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first PbII coordination polymer incorporating the L ligand.  相似文献   

5.
Free radical polymerizations of methyl methacrylate and methacrylamide in DMF solution were found to be catalytically inhibited by the addition of the boron fluoride derivative of cobaloxime to the system. The nature of this inhibition is examined and equations which describe the kinetics of these catalytically inhibited polymerizations are developed. Using these equations estimates of the inhibition constants (Cz) of 7.23 × 102 and 2.27 × 102 were estimated for methacrylamide and methyl methacrylate, respectively.  相似文献   

6.
Solution polymerization of MMA, with pyridine as the solvent and BZ2O2 and AIBN as thermal initiators, was studied kinetically at 60°C. The monomer exponent varied from 0.45 to 0.91 as [BZ2O2] was increased from 1 × 10?2 to 30 × 10?2 mole/liter in a concentration range of 8.3-4.6 mole/liter for MMA. For AIBN-initiated polymerization the monomer exponent remained constant at 0.69 as [AIBN] varied from 0.4 × 10?2 to 1.0 × 10?2 mole/liter in the same concentration range for MMA. The k2p/kt Value increased in both cases with an increase in pyridine concentration in the system. This was explained in terms of an increase in the kp value, which was due presumably to the increased reactivity of the chain radicals by donor-acceptor interaction between the molecules of solvent pyridine and propagating PMMA radicals and in terms of lowering the kt value for the diffusion-controlled termination reaction due to an increase in the medium viscosity and pyridine content.  相似文献   

7.
The rate of polymerization of thiophene, at concentrations of catalyst (SnCl4), and thiophene of the same order as was subsequently used in studying the reaction between thiophene and di(chloromethyl)benzene, is of the order of 10-2%/hr at 30°C. There is no significant self-condensation of DCMB under the same conditions. Since the reaction between thiophene and DCMB is complete at 30°C in minutes rather than hours, it is assumed that self-condensation of thiophene or DCMB during the reaction between them will be negligible and should not influence the course of the reaction or the structure of the resulting polymer. Reaction at 30°C is much too fast for convenient study. A temperature of 0°C is more appropriate and was used in subsequent kinetic work. The first two products of the condensation of p-di(chloromethyl)benzene (DCMB) with thiophene have been identified by a combination of mass, infrared, and nuclear magnetic resonance spectroscopy as thenylchloromethylbenzene (TCMB) and dithenylbenzene (DTB). DCMB, TCMB, and DTB have been estimated quantitatively during the course of the reaction by gas-liquid chromatography (GLC), and it has been established that the rates of each of the two reaction steps is first-order with respect to the chloro compound (DCMB and TCMB respectively), thiophene, and SnCl4. Rate constants for these two consecutive reactions were calculated to be k1 = 2.79 × 10-4l.2/mole2-sec, k2 = 6.37 × 10-3l.2/mole2-sec; the corresponding energies of activation are E1 = 7.93 kcal/mole, E2 = 7°67 kcal/mole. These rate constants are appreciably higher than values previously obtained for the corresponding DCMB–benzene reactions.  相似文献   

8.
The thermal decomposition rate constant of AIBN (kd) in N, N-dimethylformamide (DMF)/acrylonitrile (AN) mixtures of various compositions at 60°C is studied. The kd value is (6.45 ± 0.3) × 10−4 min−1 for pure DMF and (7.20 ± 0.3) × 10−4 min−1 for pure acrylonitrile. The kd values of DMF/AN mixtures were found to be dependent on the mixture composition. This dependence is not a linear function of the monomer mole fraction (xM), but has a minimum at ca. 70 mol % of AN. The relationship kd = f(xM) has been interpreted on the basis of the hypothesis of initiator solvation by monomer AN and solvent DMF. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Polymerization of acrylamide monomer, initiated by the redox system involving acidified ceric ammonium sulfate and 2-mercaptoethanol (2-ME) was carried out in an aqueous medium at 25° C. White, rigid polyacrylamide, isolated under controlled experimental conditions, showed a molecular weight of 1.5 × 104 from viscosity measurements. The rate of monomer (M) conversion to polymer was found to be proportional to [M]1.5, [2-ME]0.5, and [Ce(IV)]0.4. Further, the rate of disappearance of ceric ion was observed to be directly proportional to [2-ME] and independent of [M] in the range of 0.16–0.48 mole/liter. The explanation of the above proportionalities is given in terms of a proposed reaction mechanism. Values of the usual rate constants, kr, k0/kt and kt./kp ½ have been computed.  相似文献   

10.
11.
Here, the reduction chemistry of mono- and binuclear α-diimine-Re(CO)3 complexes with proton responsive ligands and their application in the electrochemically-driven CO2 reduction catalysis are presented. The work was aimed to investigate the impact of 1) two metal ions in close proximity and 2) an internal proton source on catalysis. Therefore, three different Re complexes, a binuclear one with a central phenol unit, 3 , and two mononuclear, one having a central phenol unit, 1 , and one with a methoxy unit, 2 , were utilised. All complexes are active in the CO2-to-CO conversion and CO is always the major product. The catalytic rate constant kcat for all three complexes is much higher and the overpotential is lower in DMF/water mixtures than in pure DMF (DMF=N,N-dimethylformamide). Cyclic voltammetry (CV) studies in the absence of substrate revealed that this is due to an accelerated chloride ion loss after initial reduction in DMF/water mixtures in comparison to pure DMF. Chloride ion loss is necessary for subsequent CO2 binding and this step is around ten times faster in the presence of water [ 2 : kCl(DMF)≈1.7 s−1; kCl(DMF/H2O)≈20 s−1]. The binuclear complex 3 with a proton responsive phenol unit is more active than the mononuclear complexes. In the presence of water, the observed rate constant kobs for 3 is four times higher than of 2 , in the absence of water even ten times. Thus, the two metal centres are beneficial for catalysis. Lastly, the investigation showed that the phenol unit has no impact on the rate of the catalysis, it even slows down the CO2-to-CO conversion. This is due to an unproductive, competitive side reaction: After initial reduction, 1 and 3 loose either Cl or undergo a reductive OH deprotonation forming a phenolate unit. The phenolate could bind to the metal centre blocking the sixth coordination site for CO2 activation. In DMF, O−H bond breaking and Cl ion loss have similar rate constants [ 1 : kCl(DMF)≈2 s−1, kOH≈1.5 s−1], in water/DMF Cl loss is much faster. Thus, the effect on the catalytic rate is more pronounced in DMF. However, the acidic protons lower the overpotential of the catalysis by about 150 mV.  相似文献   

12.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross-linker reagent. The dinuclear complex (PdMC)2 was prepared by one-step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6-disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4-vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross-linker (PdMC-VP)2 . Radical co-polymerization of VP and t-butylstyrene in the presence of (PdMC-VP)2 afforded a stable rotaxane cross-linked polymer (RCP). An elastic RCP was also prepared by using n-butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross-linked polymers.  相似文献   

13.
The kinetics of the anionic polymerization of octamethylcyclotetrasiloxane (D4) initiated by α-methylstyrene living polymer in tetrahydrofuran was studied. The following kinetic scheme was postulated: Initiation: Propagation: where S- and M represent the initiator and D4, respectively. At a living end concentration of 0.0377 mole/l. and a monomer concentration of 1.5 mole/l. in tetrahydrofuran at 25°C. the following kinetic data were obtained: k1 = 2.3 × 10?4 l./mole-sec., k2 < 2.3 × 10?5 sec.?1, k3 = 2.75 × 10?2l./mole-sec. k4 ≈ 1.17 × 10?2 sec.?1, K1 > 10 l./mole and K2 ≈ 2.35 l./mole. The rate constants k1 and k3 were found to be dependent on the concentration of anions. This is attributed to the dissociation of ion pairs to free ions at lower concentration. Under the experimental conditions studied the majority of the anions were present in the form of ion pairs. The reactivity of the free ions is about 100 times greater than that of ion pairs. There is no temperature effect on K2, indicating zero ΔH and positive ΔS in the propagation reaction.  相似文献   

14.
The polymerization of styrene initiated by 2,2′-azobisisobutyronitrile has been studied in N,N-dimethylformamide solution at 60°C in the presence of hexakis(N,N-dimethylformamide) iron(III) tetrafluoroborate alone, and also in the presence of added lithium chloride. The presence of Fe(DMF)63+ ions in the polymerizing systems caused retardation, but iron(III) chloro complexes produced well defined inhibition periods. Velocity constants at 60°C for polystyryl radicals towards Fe(DMF)63+, Fe(DMF)5Cl2+, Fe(DMF)4Cl2+, and FeCl4? ions were calculated to be 847, 4.15 × 104, 6.55 × 104, and 3.14 × 104 l./mole-sec, respectively. Values of the initiator efficiency f for most systems investigated ranged from 0.59 to 0.62.  相似文献   

15.
The thermal decomposition rate constant (kd ) of 2,2′‐azoisobutyronitrile in acrylonitrile (AN; monomer A)–methyl methacrylate (MM; monomer B) comonomer mixtures in N,N‐dimethylformamide (DMF) as a function of the comonomer mixture composition and its concentration in the solvent at 60 °C was studied. The dependences kd = f(xA ,C) [xA (mole fraction of A in the comonomer mixture) = A/(A + B) = A/C, where C is the comonomer mixture concentration] have a different course as a function of C: from a curve kd = f(xA ) approaching the straight line (C = 2 mol · dm−3) to a convex curve possessing a maximum at a point xA = 0.7 (C = 4 mol · dm−3) to a curve with a flattened wide maximum within the range of xA = 0.2–0.8 (C = 7 mol · dm−3) to a curve with the shape of a lying s (C = 9 mol · dm−3). All the courses of the experimental dependences kd = f(xA ,C) can be explained with a hypothesis of initiator solvation by the comonomers AN and MM and the solvent DMF. The existing solvated forms, their relative stability constants, the thermal decomposition rate constants, and the relative contents in the system were determined. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2156–2166, 2000  相似文献   

16.
The polymerization of acrylonitrile (AN) initiated by the system of tetramethyl tetrazene (TMT) and bromoacetic acid (BA) in dimethylformamide (DMF) was studied. The TMT–BA system could initiate the polymerization of AN more easily than TMT alone. The polymerization was confirmed to proceed through a radical mechanism. The initial rate of polymerization Rp was expressed by the equation: Rp = [TMT]0.62-[BA]0.5[AN]1.5. The overall activation energy for the polymerization was estimated as 9.4 kcal/mole. In the absence of monomer, the reaction of TMT with BA in DMF was also studied kinetically by measuring the evolution of nitrogen gas. The reaction was first-order in TMT and first-order in BA; the rate data at 49°C were k2 = 9.1 × 10?2l./mole-sec., ΔH? = 17.0 kcal/mole, and ΔS? = ? 6.6 eu. In addition, the treatment of TMT with BA in benzene led to the formation of tetramethylhydrazine radical cation, which was identified by its ESR spectrum. On the other hand, the relatively strong interaction between TMT and DMF was observed by absorption spectrophotometry.  相似文献   

17.
The polycondensation reaction of aromatic dicarboxylic acids and diamines by using triphenyl phosphite were carried out in N-methylpyrrolidone (NMP) in the presence of poly(4-vinylpyridine) (P4VP). The reaction, especially of terephthalic acid (TPA), was markedly facilitated to give the absence of P4VP. The reaction promoted by P4VP was further favored by the addition of various pyridine derivatives; of the pyridines examined, pyridine was most effective, giving the best results at a high level (pyridine/P4VP values up to 26). P4VP of the molecular weight in the range of 1.3 × 104?3.0 × 105 did not affect the viscosity of the resulting polymer. These favorable additive effects of P4VP on the reaction of TPA were not observed in the reactions of isophthalic acid, and m -and p-aminobenzoic acids.  相似文献   

18.
The polymerization of diallyl phthalate has been studied in two solvents, benzene (GRadical = 0.7) and chloroform (GR = 11.2), γ-radiation being used to investigate the effect of the solvent on the rates of polymerization and also chain transfer to the solvent. Kinetic analysis shows that in benzene solution the initiating species come almost exclusively from the monomer, but in chloroform they arise only from the solvent. The latter was further confirmed from the chlorine analysis of the polymer wherein chloroform appears to have telomerized with diallyl phthalate. In neither of the solvents was high molecular weight polymer obtained. The kp/kt1/2 for the polymerization of DAP was found to be 3.3 × 10?4 and 1.17 × 10?3 in benzene and chloroform solutions, respectively. The chain-transfer constant CS was 11.25 × 10?3 and 9.75 × 10?3 for benzene and chloroform, respectively.  相似文献   

19.
The results of quantitative studies of the rates of free-radical polymerization of vinyl ferrocene indicate that the latter has polymerization characteristics similar to those of styrene. The rates of homopolymerization of these two monomers in benzene at 70°C. were measured with the use of azobisisobutyronitrile as catalyst. The rate constants (k = Rp/[M][I]1/2) are kVF = (1.1 ? 1.8) × 10?4, kSTY = 1.65 × 10?4. Small amounts of vinyl ferrocene and styrene have similar effects on the rates of polymerizations of methyl methacrylate and ethyl acrylate and on the molecular weights of the resulting polymer. Polystyrene and poly(vinyl ferrocene) with similar molecular weights are isolated from polymerizations carried out under identical conditions. The rates of copolymerization of vinyl ferrocene—methyl methacrylate, vinyl ferrocene—styrene, and styrene—methyl methacrylate were determined by following the disappearance of monomers by means of gas chromatographic analyses. The relative reactivity for vinyl ferrocene is slightly lower than that for styrene.  相似文献   

20.
In the radiolysis of cyclohexane in presence of 4×10?3M diphenylmercury (Hg φ3) three isomers of hexane, methylcyclopentane (G=0.018), benzene (G=0.42) and cyclohexene (G=0.047) were detected. Addition of benzene in the mixture of cyclohexane and Hg φ3 formed two isomers of pentane, hexene and one isomer of hexane as additional products, while cyclohexene was eliminated completely. Normally, eight products were detected in presence of 10 to 50% benzene. Total radiolytic yield of products increased in presence of 15 to 25% benzene but in presence of 35 to 50% benzene G values became very low. Considerable amount of hexene is formed in a mixture of benzene and cyclohexane but neither benzene nor cyclohexane in presence of Hg φ2 formed this compound. In the presence o. benzene and φ2Hg hexane yield is very much reduced. Protection is observed in presence of 10% as well as 35 to 50% benzene in this system. The plot of benzene concentration in moles/litre versus methylcyclopentane is linear and from the slope of the straight line, the values of rate constants were found to be 2.65×10?2 litre/mole sec., 5.25×10?3 litre mole sec., 9×10?7 litre/mole sec. for methylcyclopentane, cyclohexane and benzene respectively. A plot of G(–c-C6H12) versus 1/[C6H6] also gave a straight line which confirms the sponge type protection in this multicomponent system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号