首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of the [M? 43]+ ion in equilenin is due mainly to elimination of Me radical from the [M? CO]+ ion and, to a lesser extent, to CO loss from the [M? Me]+ ion. In 14β-isoequilenin the [M? CO]+ ion is absent, and the formation of [M? 43]+ occurs via the [M? Me]+ ion. This makes the determination of the mode of junction of the rings C and D in the equilenin series possible, using high resolution mass spectra, even when only one stereoisomer is available.  相似文献   

2.
The effect of alkali metal cationization on the collision-induced decomposition of alkyl per-O-acetyl-2-deoxy-2-bromo-and-iodo-α-O-mannopyranosides was studied. The bromo sugars gave fairly abundant MH+, whereas for the iodo sugars the MH+ ions were insignificant. However, both the bromo and the iodo derivatives gave abundant M + alkali metal ion complexes. In contrast to the behaviour of the MH+ ion, the [M + Li]+, [M + Na]+ and [M + K]+ ions of these compounds do not decompose by loss of the C(1) substituent. Elimination of AcOH is the preferred fragmentation pathway of [M + Cat]+. Elimination of HX occurs only after loss of AcOH and CH2CO from MH+, whereas [M + Cat]+ directly loses HX. The elimination of HX is more pronounced from [M + Na]+ and [M + K]+ than from [M + Li]+. Loss of AcOLi is an additional fragmentation route observed in the case of the decomposition of [M + Li]+ ion.  相似文献   

3.
Experimental data on correlations between the directions of the incident primary ion and the ejected protonated [M + H]+ and alkali metal adduct [M + Cs]+ molecules for three peptide samples with an incident beam of 72.3 MeV 127I14+ ions are reported. Measurements were carried out in a linear time-of-flight mass spectrometer by monitoring the secondary ion yield as a function of electrostatic deflection in a direction perpendicular to the spectrometer axis. No difference was observed in the direction in which [M + H]+ and [M + Cs]+ ionic species are preferentially desorbed. The results obtained suggest that alkali metal cation attachment to biomolecules in plasma desorption mass spectrometry is realized in a close spatial location and time interval with protonation. Formation of ion-molecule complexes occurs at an early stage of the desorption event and precedes their ejection into the gas phase.  相似文献   

4.
The loss of 60 u from protonated peptide ions containing an arginine residue at the C-terminus has been investigated by means of low energy tandem mass spectrometry. The lowest energy conformation of singly charged bradykinin is thought to involve a salt-bridge structure, which may lead to the formation of two isomeric forms. It is thought that one isomer retains the ionizing proton at the C-terminal end of the peptide, leading to the formation of the [b n?1 + H + OH]+ fragment ion, and the other isomer retains the charge at the N-terminus, leading to the formation of the [M + H ? 60]+ fragment ion. It was found that the formation of the [M + H ? 60]+ ion occurs only from singly charged precursor ions. In addition, the loss of 60 u occurs from peptides in which the charge is localized at the N-terminus. These results indicate that the mechanism of formation of the [M + H ? 60]+ ion may be driven by a charge-remote process.  相似文献   

5.
Reactivity differences between odd ([M]+) and even electron ions (α-cleavage product) were studied by comparing water elimination mechanisms in 6-undecanol. The compounds specifically labelled with deuterium in positions 6, 5 + 7, 4 + 8 and 3 + 9 were made, and a detailed investigation of tghe metastable ion transitions carried out. A highly specific 1,4 elimination of water without preceding intramolecular hydrogen exchange occurs from [M]+, but equal amounts of 1,3 and 1,4 elimination of water preceded by specific hydrogen exchange between -OH and the hydrocarbon chain occurs from the α-cleavage ion [M – C5H11]+ . To make such distinctions a thorough examination of metastable ions is essential.  相似文献   

6.
Specific reactivity of cis- and trans-indanediols has been investigated under dimethyl ether (DME) chemical ionization conditions. Several unusual species, such as [M + 29]+ and [M + 27]+ ions, are produced in high yield. From DME pressure variations and tandem mass spectrometry experiments (low-energy collisions with Ar and NH3) including some labeled compounds, it appears that [M + 29]+ ions are generated by nucleophilic substitution according to a SNi pathway from the proton bound[M + DMEH]+ adduct ion. On the other hand, [M + 27]+ ions are produced from the covalent [M + DME ? H]+ adduct ions via a stepwise process inducing a water loss. This latter dehydration occurs from the adducts prepared by [DME ? H]+ attachment to the homobenzylic hydroxy site, which allows internal proton transfer from the charged position to the benzylic hydroxy group, promotingthe loss of water. In addition, trans indanediol labeled with 18O has been used to obtain evidence for the regioselectivity of both water-loss mechanisms from the benzylic site.  相似文献   

7.
The major dissociation pathways of the [M-H]+ (loss of NH3 or CH4) and the [M+H]+ (loss of NH3 or CH3) ions from dimethylpyrroles have been determined to occur from isomeric parent ions. For the [M-H]+ ion (formed by loss of a methyl hydrogen), loss of NH3 leads to the formation of the phenylium ion and is preceded by consecutive carbon ring expansions followed by a ring contraction to form protonated aniline. Loss of CH4 occurs after the first carbon ring expansion, which forms protonated picoline. The relative partitioning between the two dissociation paths depends upon the internal energy content of the parent ion; the highest point on the potential energy surface is the second ring expansion step. The [M+H]+ ion reacts through a similar pathway via dihydro analogs of picoline and aniline. The proposed reaction pathways are supported by results of semiempirical molecular orbital calculations.  相似文献   

8.
Geometrically isomeric dicarboxylic acids, such as maleic and fumaric acid and their methyl homologues, and the isomeric phthalic acids, have been investigated using fast atom bombardment, field ionization and field desorption mass spectrometry. The most intense peak in the positive ion fast atom bombardment spectra corresponds with the [M + H]+ ion. This ion, when derived from the E -acids, tragments either by successive loss of water and carbon monoxide or by elimination of carbon dioxide. In the case of the Z -acids only elimination of water from the [M + H]+ ions is observed to occur to a significant extent. The same is true for the [M + H]+ ions of the isomeric phthalic acids, that is the [M + H] ions derived from iso- and terephthalic acid exhibit more fragmentation than those of phthalic acid. All these acids undergo much less fragmentation upon field ionization, where not only abundant [M + H]+ ions, but also abundant [M] ions, are observed. Upon field desorption only the [M + H]+ and [M + Na]+ ions are observed under the measuring conditions. Negative ion fast atom bombardment spectra of the acids mentioned have also been recorded. In addition to the most abundant [M? H]? ions relatively intense peaks are observed, which correspond with the [M]?˙ ions. The fragmentations observed for these ions appear to be quite different from those reported in an earlier electron impact study and in a recent atmospheric pressure ionization investigation.  相似文献   

9.
A reinvestigation of the mechanism of formation of the [M – 1]+ ion in a series of N,N-dialkylbenzamides suggests that previous mechanisms put forward to account for the formation of the [M – 1]+ ion are deficient. A new mechanism is proposed which accounts for the data observed previously, as well as our results for a series of N,N-dialkyl-2-chlorobenzamides, 4-substituted N,N-dimethylbenzamides and some related compounds. For the N,N-dialkyl-2-chlorobenzamides, comparison of the abundances of the [M – 1]+ ion with the [M – 35]+ ion suggests that a concurrent reaction is occurring, besides loss of the ortho aromatic hydrogen atom. A study of substituent effects on the intensity ratio [M – 1]+/[M]+ shows an upward concave plot of this against σ+, suggesting that two competing mechanisms occur for the formation of the [M – 1]+ ion.  相似文献   

10.
The fragmentations under electron impact of 5-phenyl-1,4-benzodiazepin-2-ones are investigated with the aid of high resolution, metastable decompositions and deuterium labeling. Based on our data a mechanism for the formation of the [M – H]+ ion is proposed. It is shown that the [M – CHO]+ ion is probably formed by two different pathways. Data on two minor fragment ions give support to the structure proposed for the [M – CHO]+ ion.  相似文献   

11.
The positive electron impact (EI) and isobutane chemical ionization (CI) mass spectra of six nitramine nitrates were studied with the aid of some accurate mass measurements. In the EI spectra, β fission relative to both the nitramine and nitrate ester is important. In the CI spectra a major ion occurs at [MH – 45]+ and was found to be mainly due to [M + 2H ? NO2]+. All of the compounds except N-(2 hydroxyethyl)-N-(2′,4′,6′-trinitrophenyl)nitramine nitrate gave an [MH]+ ion. The [MH – 45]+ ion in the isobutane CI mass spectra of tetryl is also due to [M + 2H ? NO2]+.  相似文献   

12.
The ion intensity ratios from competing α-fissions of 30 tertiary aliphatic alcohols and 24 ethers of tertiary alcohols have been measured at 13 eV. The intensity ratios of ions [M ? alkyl1]+ and [M ? alkyl2]+ agree well with the reciprocal mass ratios of the respective ions in the case when the alkyl groups are not methyl (ion mass effect). The intensity ratios of [M ? alkyl]+ and [M ? methyl]+ are always too high, but intensity ratios of [M ? alkyl1]+ and [M ? alkyl2]+ may be derived indirectly from them, which also agree well with those values expected from the ion mass effect. By the indirect method it is shown, that for the 2,2-dialkyl-1,3-dioxolanes (ethylene ketals) the ion mass effect plays a dominant role too.  相似文献   

13.
Several derivatized monosaccharides, the 2-deoxy-D -ribofuranoses, have been studied by liquid-assisted secondary ion mass spectrometry (LSIMS) in order to gain insight into the factors affecting ionization in FAB/LSIMS. Examination of the mass spectra for these compounds obtained in eight liquid matrices (diethanolamine, ethylene glycol, glycerol, 2-hydroxyethyl disulfide, 2-hydroxyphenethyl alcohol, 3-nitrobenzyl alcohol, sulfolane and thioglycerol) reveals that in all cases the anomalous [M – H]+ ion is the predominant species in the molecular ion region and that [M + Na]+ species are observed in the presence of Na+. The analysis of these compounds by chemical ionization with ammonia shows [M + H]+ as the major species while [M – H]+ is essentially absent. This indicates that the ionization processes occurring in the two techniques are not analogous. Thermodynamic considerations based on the gas-phase hydride ion affinities of the protonated matrices do not support a predominant gas-phase mechanism for the formation of [M – H]+ in LSIMS. However, it is possible using solvation energies to rationalize the formation of [M – H]+ in terms of condensed-phase ionization processes which take place either in the liquid matrix or in the dense selvedge region immediately above the surface where extensive solvation is present. Electrospray data obtained for one of the derivatized monosaccharides indicates that the [M – H]+ is not performed in the condensed phase in LSIMS and that it is the product of fast ion beam-induced processes. While the nature of the matrix is seen to have little effect on the intensities of [M – H]+ and [M + H]+ it is observed to be an important factor for the intensity of M+˙ for one of the monosaccharides. This effect can be related to the electron-scavenging properties of the matrices and reinforces the hypothesis that condensed phase processes are significant in ionization.  相似文献   

14.
Collision-induced decompositions (CIDs) of the [M + H]+, [M + Li]+, [M + Na]+, [M + K]+ and [M + Ag]+ ions of some methyl-6-deoxy-6-bromo-α-D-glucopyranoside derivatives are discussed. Elimination of MeOH resulting in the glycosidyl cation is the predominant reaction of the [M + H]+ ion. This process is completely suppressed during CID of the metal-cationized species, which, surprisingly, show elimination of the added metal in the form of RCOO-metal and metal bromide in the case of the ester derivatives. These reactions appear to be assisted by neighbouring group participation. Because of the proximity of the C(3)-oxygen with C(6), the benzyl ether derivative is characterized by the loss of PhCH2Br from the [M + metal]+ ion.  相似文献   

15.
The collisional activation spectra of monosaccharide ions formed by [Li]+, [Na]+ and [K]+ ion attachment under field desorption conditions are reported. It is shown that the elimination of the alkali ions is determined by the alkali ion affinities of the molecules (M) and competes with a fragmentation of M which is almost independent of the alkali ion attached. Correspondingly the alkali ion is predominantly retained in the fragment ions. The usefulness of this method for the differentiation of underivatized isomers is demonstrated.  相似文献   

16.
Mass Spectra of unsubstituted, 2-methyl-, 3-methyl and 2,3-dimethylchromones were examined. These compounds showed [RDA]+˙ and [RDA + H]+ ions as characteristc ions, together with [M? H]+,[M? CO]+˙,[M? CHO]+ and [RDA? CO]+˙ ions. Based on deuterium labelling experiments and measurement of metastable peaks by the ion kinetic energy defocusing technique, the origin of transferred hydrogen in the [RDA + H]+ ion was clarified. The mechanism of the [RDA + H]+ ion formation is discussed.  相似文献   

17.
The structures of the major adduct ions formed in ammonia chemical ionization of thirteen aliphatic and aromatic ketones have been studied by mass analysed ion kinetic energy spectrometry. The [M+NH3+H]+ ion is shown to have a protonated carbinolamine structure, [M+2NH3+H]+ to be a protonated carbinolamine with hydrogen-bonded ammonia and [2M+NH3+H]+ to be, at least in part, a protonated carbinolamine with hydrogen-bonded ketone. These structures may imply a nucleophilic addition of ammonia at the carbonyl of the ketone-ammonium ion complex. An unusual hydroxy migration is seen in the internal rearrangement of the [2M+NH3+H]+ ion leading to the formation of a protonated imine.  相似文献   

18.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

19.
The selective methylation and methylene substitution reactions of dimethyl ether ions with ethylene glycol, ethylene glycol monomethyl ether, and ethylene glycol dimethyl ether were investigated in a quadrupole ion trap mass spectrometer. Whereas the reactions of ethylene glycol and ethylene glycol monomethyl ether with the methoxymethylene cation 45+ gave only [M + 13]+ product ions, the reaction of ethylene glycol dimethyl ether with the same reagent ion yielded exclusively [M + 15]+ ions. The relative rates of formation of these products and those from competing reactions were examined and rationalized on the basis of structural and electronic considerations. The heats of formation for various relevant species were estimated by computational methods and showed that the reactions leading to the [M + 13]+ ions were more energetically favorable than those leading to the [M + 15]+ products for cases in which both reactions are possible. Finally, the collision-induced dissociation behavior of the [M + H]+, [M + 13]+, and [M + 15]+ ions indicated that the and [M + H]+ rons dissociated by analogous pathways and were thus structurally similar, whereas the [M + 13]+ ions possessed distinctly different structural characteristics.  相似文献   

20.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号