首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early investigations of protonated polyethylene glycol fragmentation suggested the dissociation mechanism includes both direct and sequential processes. Experiments designed to study the proposed mechanisms of sequential dissociation are absent from the literature. In order to obtain additional experimental details about the fragmentation reactions, the dissociation of protonated polyethylene glycol was studied by energy‐dependent collision‐induced dissociation (CID). Key fragment ions were separated by mass differences corresponding to the loss of single monomer units. Several fragment ions were also generated by in‐source fragmentation and studied by CID. These experiments indicate the primary ions undergo sequential dissociation by the loss of either one or two monomer units. The results suggest that at least two different mechanisms must be considered to explain the sequential dissociation of protonated polyethylene glycols. The reaction involving the elimination of two subunits suggests the loss of a six‐membered 1,4‐dioxane product, while the elimination of a single subunit involves the loss of acetaldehyde by a 1,2‐hydride shift rearrangement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A systematic study of the types of fragmentation undergone by internally excited protonated molecules is presented. Two representative functional groups, ethers and ketones, are selected, and both aliphatic and aromatic substituents are examined. The ions are formed by protonation or alkylation in a chemical ionization source, and caused to fragment by collision at high relative kinetic energy. The prevalence of 1,3-rearrangements and the breakdown of the even electron fragmentation rule highlight the ion chemistry uncovered here. Specific findings include: (i) electron unpairing reactions associated with alkyl radical loss are common. These are probably energetically less favorable simple bond cleavages and are observed in competition with entropically less favorable elimination reactions. (ii) Alkane elimination is a characteristic reaction, which often occurs by a four-centered mechanism. Several variations on this reaction type are encountered. (iii) Alkene elimination is another ubiquitous reaction which occurs by a four-centered mechanism in the systems studied here. Competition between alkene and alkane loss is extremely sensitive to the particular system in hand.  相似文献   

3.
Collision-induced dissociation and infrared multiphoton dissociation of ions formed in di- and tri-ethylamine, di- and tri-n-propylamine, and di-isopropylamine were investigated by Fourier-transform ion-cyclotron resonance mass spectrometry. Molecular ions of all amines except di-n-propylamine produced similar fragment ions when subjected to either dissociation technique. The initial fragmentation involved CαCβ bond cleavage, loss of an alkyl radical, and formation of an immonium ions. Subsequent fragmentations of the immonium ions produced by both dissociation mechanisms involved McLafferty-type rearrangements and loss of alkenes. The molecular ion of di-n-propylamine fragmented by a different mechanism when subjected to infrared irradiation. Protonated molecules of di- and tri-n-propylamine yielded C3H6 and an ammonium ion upon infrared multiphoton dissociation, while protonated molecules of the other amines did not dissociate when this technique was applied. In contrast, collision-induced dissociation produced fragmentation for all protonated molecules. Explanation of the different fragmentations observed for the two dissociation techniques is given in terms of a mechanism involving a tight transition state for protonated di- and tri-n-propylamine dissociation.  相似文献   

4.
应用碰撞诱导解离(CID)技术研究了电子轰击方法产生的脂肪胺分子离子和化学电离方法产生的质子化脂肪胺分子的碎裂反应。质子化脂肪胺碰撞活化后的主要碎裂通道包括丢失C_XH_(2X)、C_XH_(2X 1)、C_XH_(2X 2)单元及NH_3和生成[C_yH_(2y 1)]及CH_3CH=NH_2~ 离子。脂肪胺分子离子碰撞活化后的主要碎裂通道是丢失C_XH_(2X)、C_XH_(2X 1)及NH_3和生成[C_mH_(2m-1)]~ 、CH_2NH_2~ 及CH_3CHNH_2~ 离子。随着碰撞能的增加,远电荷碎裂反应和电荷诱导碎裂反应之间竞争引起产物离子的的分布发生变化,如[C_mH_(2m-1)]~ 和[C_yH_(2y 1)]~ 离子。自由基机理可以解释质子化脂肪胺分子的远电荷反应。分子内氢抽取可以解释脂肪胺分子离子的碎裂反应。  相似文献   

5.
We studied lacticin 481, a small lantibiotic with three lanthionine bridges, by electron capture dissociation (ECD) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Following electron capture, very little fragmentation was observed, but species formed by nondissociative single and multiple electron capture were abundant. Ions formed by double electron capture were subjected to sustained off resonance irradiation collision induced dissociation (SORI-CID) to determine whether stable biradicals were formed. In the SORI-CID spectra of the ions formed by double electron capture, some, but minor, H* radical loss was observed, which was not observed at all for regularly protonated ions. A small part of the ions formed by double electron capture are thus long-lived biradicals. Apart from the observed H* loss, the SORI-CID spectra of ions that captured two electrons was similar to that of regularly protonated ions and quite different from the SORI-CID spectra of radical ions formed by single electron capture. This implies that recombination of the two radical sites is the dominant process in biradical lacticin 481 ions, at least on the time scale of our SORI-CID experiments.  相似文献   

6.
In-source collision induced dissociation was applied to access second generation ions of protonated guanosine. The in-source gas-phase behavior of [BH2]+-NH3 (m/z 135, C5H3N4O+) was investigated. Adduct formation and reactions with available solvent molecules (H2O and CH3OH) were demonstrated. Several addition/elimination sequences were observed for this particular ion and solvent molecules. Dissociation pathways for the newly formed ions were developed using a QqTOF mass spectrometer, permitting the assignment of elemental compositions of all product ions produced. Reaction schemes were suggested arising from the ring-opened intermediate of the protonated base moiety [BH2]+, obtained from fragmentation of guanosine. The mass spectral data revealed that the in-source CH3OH-reaction product underwent more complex fragmentations than the comparable ion following reaction with H2O. A rearrangement and a parallel radical dissociation pathway were discerned. Apart from the mass spectrometric evidence, the fragmentation schemes are supported by density functional theory calculations, in which the reaction of the ring-opened protonated guanine intermediate with CH3OH and a number of subsequent fragmentations were elaborated. Additionally, an in-source transition from the ring-opened intermediate of protonated guanine to the ring-opened intermediate of protonated xanthine was suggested. For comparison, a low-energy collision induced dissociation study of xanthosine was performed. Its dissociation pathways agreed with our assumption.  相似文献   

7.
SitesofProtonationandUnimolecularFragmenta┐tionofProtonatedN┐HydroxyphthalimideintheGasPhaseSHEYi-min,SUNYu-quan,JIYi-pingand...  相似文献   

8.
Homocysteine sulfinyl radical (SO?Hcy) is a reactive intermediate involved during oxidative damage of DNA in the presence of high concentrations of homocysteine (Hcy). The short lifetime of SO?Hcy makes its preparation, isolation, and characterization challenging using traditional chemical measurement tools. Herein, we demonstrate the first study on mass‐selected protonated SO?Hcy ions in the gas phase by investigating its unimolecular dissociation pathways from low energy collision‐induced dissociation (CID). Tandem mass spectrometry (MS/MS), stable‐isotope labeling, and theoretical calculations were employed to rationalize the observed fragmentation pathways. The dominant dissociation channel of protonated SO?Hcy was a charge‐directed H2O loss from the protonated sulfinyl radical (‐SO?) moiety, forming a thiyl radical (‐S?), which further triggered sequential radical‐directed ?SH loss through multiple pathways. Compared to cysteine sulfinyl radical (SO?Cys), the small structural change induced by one additional methylene group in the side chain of SO?Hcy significantly promotes its base property while reducing the radical reactivity of sulfinyl radical. This observation provides new insight into studying reactions of SO?Hcy with biomolecules, which are critical in understanding toxicity induced by high levels of Hcy in biological conditions.  相似文献   

9.
The unimolecular fragmentation reactions of 28 protonated nitroarenes, occurring on the metastable ion time-scale, are reported. In addition, the collision-induced fragmentation of the same species have been studied at 10 eV and at 50 eV collision energy. When an OH, COOH or NH2 substituent is ortho to the nitro function, the dominant fragmentation involves loss of H2O, for both unimolecular and collision-induced reactions. When there is an electron-releasing substituent ortho or para to the litro group, loss of OH is the dominant fragmentation reaction both on the metastable ion time-scale and for ions activated by collision. When the electron-releasing substituent is meta to the nitro group, loss of NO2 is the dominant low-energy unimolecular fragmentation reaction while loss of HNO2 is the most important fragmentation for ions activated by 50 eV collisions. Elimination of NO from [MH]+ occurs to a significant extent in the unimolecular fragmentation of protonated nitrobenzene and those protenated nitrobenzenes containing electron- attracting substituents. In the collision-induced dissociation of these species loss of HNO2 occurs at the expense of loss of NO. The results are consistent with protonation predominantly at the nitro group. The results are discussed in terms of the use of neutral loss scans in tandem mass spectrometry to monitor complex mixtures for nitroarenes.  相似文献   

10.
Peptide fragments such as b and y sequence ions generated upon low‐energy collision‐induced dissociation have been routinely used for tandem mass spectrometry (MS/MS)‐based peptide/protein identification. The underlying formation mechanisms have been studied extensively and described within the literature. As a result, the ‘mobile proton model’ and ‘pathways in competition model’ have been built to interpret a majority of peptide fragmentation behavior. However, unusual peptide fragments which involve unfamiliar fragmentation pathways or various rearrangement reactions occasionally appear in MS/MS spectra, resulting in confused MS/MS interpretations. In this work, a series of unfamiliar c ions are detected in MS/MS spectra of the model peptides having an N‐terminal Arg or deuterohemin group upon low‐energy collision‐induced dissociation process. Both the protonated Arg and deuterohemin group play an important role in retention of a positive charge at the N‐terminus that is remote from the cleavage sites. According to previous reports and our studies involving amino acid substitutions and hydrogen–deuterium exchange, we propose a McLafferty‐type rearrangement via charge‐remote fragmentation as the potential mechanism to explain the formation of c ions from precursor peptide ions or unconventional b ions. Density functional theory calculations are also employed in order to elucidate the proposed fragmentation mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
应用碰撞诱导解离(CID)技术研究了电子轰击方法产生的脂肪胺分子离子和化学电离方法产生的质子化脂肪胺分子的碎裂反应。质子化脂肪胺碰撞活化后的主要碎裂通道包括丢失C~XH~2~X、C~XH~2~X~+~1、C~XH~2~X~+~2单元及NH~3和生成[C~yH~2~y~+~1]^+及CH~3CH=NH~2^+离子。脂肪胺分子离子碰撞活化后的主要碎裂通道是丢失C~XH~2~X、C~XH~2~X~+~1及NH~3和生成[C~mH~2~m~-~1]^+、CH~2NH~2^+及CH~3CHNH~2^+离子。随着碰撞能的增加,远电荷碎裂反应和电荷诱导碎裂反应之间竞争引起产物离子的分布发生变化,如[C~mH~2~m~-~1]^+和[C~yH~2~y~+~1]^+离子。自由基机理可以解释质子化脂肪胺分子的远电荷反应。分子内氢抽取可以解释脂肪胺分子离子的碎裂反应。  相似文献   

12.
Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD).  相似文献   

13.
More than 310 kinds of cluster ions of S(m) P(n) H(k) (k+) are observed in a single ESI mass spectrum of a mixed solution of serine and phosphoric acid. Some typical cluster ions are selected, activated by collision in a FT ICR cell, and the dissociation pathways were deduced in detail. For large singly protonated ions, the collisions cause the ejection of subunits of serine or phosphoric acid subsequently producing the ions of S(2) P(4) H(1) (1+) , which can be further dissociated by the loss of phosphoric acid molecules in turn and form the protonated serine dimer and monomer. However, for the doubly protonated ions, the dissociation pathways change from the loss of a protonated serine dimer for the ions of S(7) P(9) H(2) (2+) to the neutral loss of H(3) PO(4) for the ions of S(7) P(12) H(2) (2+) or the neutral loss of serine or H(3) PO(4) for the larger clusters, indicating the effect of cluster sizes on the process of dissociation. The structure of S(2) P(4) H(1) (1+) is suggested based on B3LYP/6-31G(d,p) calculations. The diversity and structural orderliness of the hetero-cluster ions are mainly attributed to the network of hydrogen bonds inside the cluster ions and the extraordinary amphotericity of the components.  相似文献   

14.
The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.  相似文献   

15.
Arginine is often involved at the C-terminus of peptides obtained from tryptic digests of proteins. The very basic guanidine group of the side-chain of arginine has a large effect on the backbone fragmentation of protonated peptides. Furthermore, arginine exhibits specific fragmentation reactions involving its side-chain. Various tautomerization states, conformers and side-chain dissociation channels of protonated arginine were studied using theoretical methods. The guanidine loss of protonated arginine is proved to be an S(N)2 substitution on the delta-carbon of the side-chain, starting from species containing the N(epsilon)H-C(+)(N(eta)H(2))(N(eta')H(2)) or -N(epsilon) (+)H(2)-C(N(eta)H)(N(eta')H(2)) moieties and leads to formation to either protonated guanidine or protonated proline. In the corresponding transition structures the proline moiety is protonated. Under low-energy collision conditions the extra proton transfers to the guanidine moiety, leading to the formation of C(+)(NH(2))(3). On the other hand, the lifetime of the fragmenting species under high-energy collision conditions is shorter, resulting in enhanced formation of protonated proline and its dissociation products. The first step of ammonia loss is the leaving of a preformed NH(3) from tautomers containing the -N(epsilon)H-C(N(eta)H(3) (+))(N(eta')H) or -N(epsilon)-C(N(eta)H(3) (+))(N(eta')H(2)) moieties. The resulting protonated carbodiimide group can be stabilized by intramolecular nucleophilic attack, leading to ring formation. Overall, reactions involved in the ammonia loss from protonated arginine can be considered as an S(N)1 substitution on the central zeta-carbon of the guanidine group.  相似文献   

16.
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.  相似文献   

17.
Ionization of polymers in mass spectrometry is usually achieved by forming metal ion adducts. The metal ion has been shown by Wesdemiotis to often play a spectator role in the collision-induced dissociation (CID) chemistry of these species, wherein they fragment according to a free-radical mechanism similar to that found in their pyrolysis. The result is a predominance of low-mass ions in the CID mass spectrum. We have changed this behavior by generating protonated oligomers in the gas phase by first forming proton-bound complexes of the oligomers with amino acids or peptides by electrospray ionization. These complexes dissociate first by loss of the amino acid/peptide to form protonated oligomers, which then undergo a unique fragmentation chemistry. In this article we discuss the results for poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA). Initially, protonated PMMA and PBA lose methanol and butanol, respectively, from the side chains of the respective monomers. The resulting PMMA-derived ion then undergoes a series of neutral losses corresponding to 32 and 28 Da, methanol and carbon monoxide. This continues as collision energy increases until a final, carbon-rich backbone ion is formed, which then undergoes a classic hydrocarbon fragmentation pattern. The PBA-derived ions are proposed to fragment by the loss of butylether molecules to form anhydride rings along the oligomer chain. The number of ether molecules lost corresponded to half the number of available side chains in the oligomer. The resulting poly-anhydride ion dissociates by small molecule loss. Mechanisms have been suggested for the fragmentation chemistry of these two classes of oligomers.  相似文献   

18.
The gas phase fragmentation reactions of protonated cysteine and cysteine-containing peptides have been studied using a combination of collisional activation in a tandem mass spectrometer and ab initio calculations [at the MP2(FC)/6-31G*//HF/6-31G* level of theory]. There are two major competing dissociation pathways for protonated cysteine involving: (i) loss of ammonia, and (ii) loss of the elements of [CH2O2]. MS/MS, MS/MS of selected ions formed by collisional activation in the electrospray ionization source as well as ab initio calculations have been carried out to determine the mechanisms of these reactions. The ab initio results reveal that the most stable [M + H − NH3]+ isomer is an episulfonium ion (A), whereas the most stable [M + H − CH2O2]+ isomer is an immonium ion (B). The effect of the position of the cysteine residue on the fragmentation reactions of the [M + H]+ ions of all the possible simple dipeptide and tripeptide methyl esters containing one cysteine (where all other residues are glycine) has also been investigated. When cysteine is at the N-terminal position, NH3 loss is observed, although the relative abundance of the resultant [M + H − NH3]+ ion decreases with increasing peptide size. In contrast, when cysteine is at any other position, water loss is observed. The proposed mechanism for loss of H2O is in competition with those channels leading to the formation of structurally relevant sequence ions.  相似文献   

19.
The gas phase reactions of protonated tryptophan have been examined in a quadrupole ion trap using a combination of collision induced dissociation, hydrogen-deuterium exchange, regiospecific deuterium labeling and molecular orbital calculations (at the B3LYP/6-31G* level of theory). The loss of ammonia from protonated tryptophan is observed as the primary fragmentation pathway, with concomitant formation of a [M + H - NH(3)](+) ion by nucleophilic attack from the C3 position of the indole side chain. Hydrogen-deuterium exchange and regiospecific deuterium labeling reveals that scrambling of protons in the C2 and C4 positions of the indole ring, via intramolecular proton transfer from the thermodynamically preferred site of protonation at the amino nitrogen, precedes ammonia loss. Molecular orbital calculations have been employed to demonstrate that the activation barriers to intramolecular proton transfer are lower than that for NH(3) loss.  相似文献   

20.
The effect of the basic residue on the energetics, dynamics, and mechanisms of backbone fragmentation of protonated peptides was investigated. Time-resolved and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogues, in which arginine is replaced with less basic lysine and histidine residues, was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). SID experiments demonstrated different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. Because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone and imine/enol pathways of arginine-containing peptides on a long time scale of the FTICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by canonical pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号