首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Electronic structure and magnetic properties of metastable SmCo_7 compound   总被引:1,自引:0,他引:1  
1 Introduction The rare-earth transition-metal intermetallic compounds have been widely investi-gated for many years, among them the Sm-Co series compounds with 1:5 and 2:17 crys-tal structures. These compounds have been used as sintered and bonded permanent magnets since the 1960s[1,2]. Interest recently has been focused on the TbCu7-type struc-ture Sm-Co intermetallic compounds with a strong uniaxial magnetocrytalline anisot-ropy and a low temperature coefficient (β = ?0.11%)[3―6] due t…  相似文献   

2.
The orbital structure and magnetic ordering of the Jahn-Teller multiferroic BiMnO3 manganite have been theoretically studied. It is shown that the orbital structure depends not only on the nearest-neighbor oxygen environment of manganese ions, but also on their next-to-nearest neighbors. The orbital structure significantly influences the magnetic order that forms as a result of competition between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

3.
We have utilized resonant x-ray diffraction at the Mn L(II,III) edges in order to directly compare magnetic and orbital correlations in Pr0.6Ca0.4MnO3. Comparing the widths of the magnetic and orbital diffraction peaks, we find that the magnetic correlation length exceeds that of the orbital order by nearly a factor of 2. Furthermore, we observe a large (approximately 3 eV) spectral weight shift between the magnetic and orbital resonant line shapes, which cannot be explained within the classic Goodenough picture of a charge-ordered ground state. To explain the shift, we calculate the orbital and magnetic resonant diffraction line shapes based on a relaxed charge-ordered model.  相似文献   

4.
The electronic density of states, spin-splittings and atomic magnetic moments of SmCO7-compound have been studied using spin-polarized MS-Xα method. The results show that a few of electrons are transferred to Sm(5d0) orbital because of orbital hybridization between Sm and Co atoms in the compound. The exchange interactions between 3d and 5d electrons lead to the magnetic coupling between Sm and Co, and therefore, result in the long-range ferromagnetic order inside the SmCo7 compound. There are negative exchange couplings occurring at some levels, which weakens the strength of average coupling around Co lattice. So, the Curie temperature and Co-moment of SmCo7-decrease distinctly compared with pure Co. Compared with SmCo5 compound, the disordered substitution of Co-Co “dumbbell-atom” pairs for Sm changes the local environment of Co lattice, which makes the 2e site bear negative magnetic moment. The strength of hybridization near Fermi level weakens and the free energy of the compound increases obviously. Thus, SmCo7 is a metastable compound at room temperature. Considering the localization of 4f electrons and a few of 5d electrons arising from the orbital hybridization, the magnetic moment of Sm atom will be 1.61μB in SmCo7 compound, which is in agreement with the experimental values of Sm3+ ion-moment and Sm atom-moment in metals.  相似文献   

5.
The crystal and magnetic structure of (Ho(0.50+x)Ca(0.50-x))(Mn(1-x)Cr(x))O(3) (x = 0.00, 0.01, 0.02, 0.03) has been investigated between 5 and 300 K by means of neutron powder diffraction followed by Rietveld refinement and dc magnetic measurements. During cooling an orthorhombic to monoclinic phase transition occurs on account of the charge and orbital ordering taking place in the Mn sub-lattice; at low temperature phase separation takes place and the main monoclinic phase coexists with a secondary orthorhombic phase, whose amount slightly increases with the increase of Cr content. Cr(3+) is not involved in orbital ordering or superexchange interactions. The charge and magnetic ordering are decoupled: the Mn moments order according to a CE-type structure in all samples.  相似文献   

6.
用自旋极化的MS-Xα方法研究了稀土-过渡族化合物SmCo55的电子态密度、自 旋能级劈裂及原子磁矩.研究结果显示,由于化合物中Sm-Co间的轨道杂化效应,使Sm原子原来的5d00空轨道上占据了少量5d电子.由于Co(3d)-Sm(5d)电子间的直接交换作用,导致了Sm-Co间的磁性交换耦合,这是化合物中形成Sm-Co铁磁性长程序的一个重要原因.在SmCo55化合物中存在6个能级呈现负交换耦合,导致了SmCo55关键词: 电子结构 自旋极化 原子磁矩 交换耦合  相似文献   

7.
A theoretical study of the magnetic properties of the CoPt and FePt ordered alloys has been performed. The calculation is done as a function of the spin-quantization axis by means of both the local spin density and the generalized-gradient approximations in conjunction with the full-potential linear muffin–tin orbital method. Both approximations produced similar results for the FePt and CoPt compounds. The band structure and the total density of states have been calculated and it was confirmed that all electronic states contribute to the magneto-crystalline anisotropy energy; the magnetization axis is along the [0 0 1] direction. The Fe and Co orbital magnetic moments decrease with respect to the angle γ between the [0 0 1] axis and the spin quantization axis, but for the [1 0 0] axis the orbital moment is comparable to the [0 0 1] moment. The Pt orbital moments are of the same order of magnitude as those of Fe and Co moments due to the large spin–orbit splitting parameter of Pt and show a similar behavior with the angle γ.  相似文献   

8.
The magneto-elastic properties of single-crystalline La0.95Sr0.05MnO3 have been studied ultrasonically. Our investigations focussed on the temperature interval where magnetic ordering starts to evolve and results in a spin canted antiferromagnetic ground state. In detail the experiments revealed that the magnetic order parameter in low-doped manganite is only weakly coupled to lattice strains. Furthermore, the anomalous temperature dependence of the order parameter as found resembles highly that in stoichiometric LaMnO3. However, the main and most surprising finding is that external magnetic fields favor the spin canted phase in La0.95Sr0.05MnO3. It is unclear at present how the exchange interaction can be tuned by magnetic fields in the way observed and we are not aware of existing theoretical concepts which might give a plausible explanation for the unexpected field dependent behavior of the critical temperature. We believe, however, that this behavior primarily results from the fact that the exchange interaction depends sensitively on the orbital configuration of the manganese d electrons. Received 27 March 2000  相似文献   

9.
The effect of residual orbital magnetic moment of Co2+ in KCoF3 on the magnetic susceptibility has been studied. For the calculation for both the ordered state and the paramagnetic state we have applied the correlated effective field approximation developed by Lines. An excellent value of the Néel temperature is obtained and, except near the Néel temperature, the calculated susceptibility agrees well with the experimental results over the whole temperature range.  相似文献   

10.
11.
We have been able to induce a linear dichroic signal in the Yb M(5) x-ray absorption white line of cubic YbInNi(4) by the application of a magnetic field. The nonzero integrated intensity of the magnetic field induced dichroic spectrum indicates a net noncubic 4f orbital polarization. A quantitative analysis of the temperature and field strength dependence establishes that the crystal-field ground state is a Γ(8) quartet. The results demonstrate the potential of magnetic field induced linear dichroism as a new powerful approach for the investigation of the degeneracy and orbital degrees of freedom of cubic heavy-fermion and Kondo systems.  相似文献   

12.
Antiferroquadrupolar (AFQ) ordering has been conjectured in several rare-earth compounds to explain their anomalous magnetic properties. No direct evidence for AFQ ordering, however, has been reported. Using the resonant x-ray scattering technique near the Dy L(III) absorption edge, we have succeeded in observing the AFQ order parameter in DyB2C2 and analyzing the energy and polarization dependence. The much weaker coupling between the orbital degrees of freedom and the lattice in 4f electron systems than in 3d compounds makes them an ideal platform to study orbital interactions originating from electronic mechanisms.  相似文献   

13.
The effect of spin-orbit interaction on the magnetic susceptibility of metals has been investigated using a pseudopotential formalism. The orbital spin and spin-orbit contributions to the magnetic susceptibility of Zn and Cd have been calculated. An important feature is that the spin-orbit contribution is diamagnetic and is of the same order of magnitude as orbital contribution in the case of Zn and Cd.  相似文献   

14.
In order to confirm the role of the crystalline electric potential on the stability of non collinear magnetic structures of the rare earth compounds with the FeB-type structure, the magnetic properties of the (Gd0.5Y0.5)Ni compound, where the rare earth orbital moment is nul, are studied. Below its Curie temperature (57 K) the compound is ferromagnetic. The spontaneous magnetization at 0 K reaches 7.05 μB per gadolinium atom. Yttrium and nickel atoms being not magnetic the gadolinium moments are parallel and the exchange interactions are positive. Then the non collinear magnetic structures observed when the alloyed rare earths have an orbital moment result from the competition between a multiaxial anisotropy due to the crystal field effects and isotropic exchange interactions of the Heisenberg type.  相似文献   

15.
The electric resistance, magnetic susceptibility, and specific heat of the icosahedral phases of the Al-Cu-Fe system have been examined in the melt region. It has been shown that the features of the properties of a homogeneous solid state, as well as correlations between these features, hold in melts up to temperatures above the melting point by several hundreds of degrees. The results indicate that the short-range order and orbital hybridization determine the mechanism responsible for the electronic spectrum and ultrahigh-resistance state of quasicrystals.  相似文献   

16.
We report on optical measurements of the 1D Heisenberg antiferromagnet KCuF3. The crystal-field excitations of the Cu2+ ions have been observed and their temperature dependence can be understood in terms of magnetic and exchange-induced dipole mechanisms and vibronic interactions. Above TN we observe a new temperature scale TS characterized by the emergence of narrow absorption features that correlate with changes of the orbital ordering as observed by Paolasini et al. [Phys. Rev. Lett. 88, 106403 (2002)]. The appearance of these optical transitions provides evidence for a symmetry change above the Néel temperature that affects the orbital ordering and paves the way for the antiferromagnetic ordering.  相似文献   

17.
To unravel the mystery of the recently observed giant magnetic moments of Fe and Co in Cs films, orbital-polarization corrected relativistic spin density functional calculations have been performed. Unlike other transition–metal systems where the orbital magnetic moments are quenched, Fe and Co in Cs as well as in other alkali metals are found to possess a giant orbital moment of 2–3 μB along with a large spin moment. Also, these free atom-like spin and orbital magnetic moments in Cs would not be squashed under large lattice contractions up to 23% around the impurity atoms. The induced moments on the host atoms are small. The results offer an explanation for the origin of the giant magnetic moments of Fe and Co in Cs films.  相似文献   

18.
A new physical effect, namely, oscillations of the orbital magnetic moment with a change in the electric field strength in two types of nanostructures, has been predicted. Explicit analytical expressions for the orbital magnetic moment of a quantum well and a quantum dot in crossed magnetic and electric fields have been derived. The oscillations of the orbital magnetic moment with a change in the electric and magnetic fields have been studied. The oscillation periods in both the electric and magnetic fields have been found and the limiting cases of the strong magnetic and quantum confinement effects have been considered.  相似文献   

19.
Following the same strategy used for RVO3, thermal conductivity measurements have been made on a series of single-crystal perovskites RTiO3 (R=La,Nd,...,Yb). Results reveal explicitly a transition from an orbital liquid to an orbitally ordered phase at a magnetic transition temperature, which is common for both the antiferromagnetic and ferromagnetic phases in the phase diagram of RTiO3. This spin/orbital transition is consistent with the mode softening at T_{N} in antiferromagnetic LaTiO3 and is supported by an anomalous critical behavior at T_{c} in ferromagnetic YTiO3.  相似文献   

20.
Results of high-energy magnetic X-ray diffraction on pure antiferromagnetic chromium are presented. The temperature dependence of the propagation vector of the spin-density wave (SDW) and the strain-wave (SW) could be reproduced. The temperature dependence of the magnetic integrated intensity could be measured in the transversally as well as in the longitudinally polarised SDW phase. The magnetic form-factor has been determined in the transversally polarised SDW phase with five magnetic satellites. For the first time a spin-orbit separation has been performed by comparing X-ray to neutron data. The small orbital contribution to the magnetisation density turns out to be negligible, in agreement to our relativistic band-structure calculations. In addition, measurements of strain-wave reflections have been undertaken, and the results complement previous studies. Received 17 August 1998 and Received in final form 10 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号