首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Ru(bpy)2(phen)]^2+主配体上双取代效应DFT法研究   总被引:1,自引:0,他引:1  
对钌联吡啶菲咯啉配合物[Ru(bpy)2(phen)]^2+及其主配体(phen)上5,6-双取代衍生物,用密度泛函(DFT)法在B3LYP/LanL2DZ水平上进行理论计算研究。探讨供电子基团(OH)和拉电子基团(F)在主配体上的取代对配合物的电子结构及相关性质,如配合物前沿分子轨道的能量、组成、光谱性质、原子的净电荷布居及配位键长键角等的影响规律。计算结果表明,取代基对该系列取代衍生物的电子结构,特别是第一激发态的电子云分布影响较大,拉电子基团(F)能活化主配体,钝化辅助配体;而代电子基团(OH)则相反。无认是供电子基团(OH),还是拉电子基团(F)都导致取代衍生物的电子基谱带红移。此外,用基于极性交替规律及极性叠加概念的多系列箭头的图示方法对主配体上的原子净电荷布居的特征作了讨论。计算结果能较好地解释有关的实验现象与规律。  相似文献   

2.
Photochemical and photophysical data are reported for a series of fac-[Mn(CO)(3)(phen)(Im-R)](SO(3)CF(3)) complexes, where phen is 1,10-phenanthroline and Im is imidazole. Intraligand and metal-to-ligand charge transfer (MLCT) transitions are observed in the electronic absorption spectra of these complexes and are sensitive to the nature of the ligand substituent. At room temperature the emission spectra show a clear progression from broad structureless MLCT to highly structured pi-pi* emission on going from R = -H, -CH(3), -C(6)H(5), to -Metro, where Metro is 2-methyl-5-nitroimidazole. Even at low temperatures the latter complexes show only the pi-pi* emission. The trend in the photophysical properties found in the emission spectra parallels the changes in the photochemical properties with the electron-donating or electron-withdrawing power of the substituent on the imidazole ligand. Although MLCT irradiation of the complexes with R = -H, -CH(3) leads to the mer-[Mn(CO)(3)(phen)(Im-R)](+) isomers, the complexes with the imidazole ligand substituted by -C(6)H(5) or -Metro release the Im-R ligand and produce the stereoretentive fac-[Mn(CO)(3)(phen)(S)](+) complexes. The stereochemical fate and mechanistic implications of the photolysis reactions are discussed in terms of the nature of ligand substitution.  相似文献   

3.
Ab initio electronic structure calculations on a series of ligands, p-RC6H4NC:, indicate, that the energy of the LUMO correlates with the electron-withdrawing/donating capabilities of the substituent group, which determines the relative pi-acidity of the ligand. Depending on the nature of the para substituent group on the aryl isocyanide ligand, bis(aryl isocyanide) complexes of tungsten-containing bulky bidentate arylphosphine ligands adopt either cis or trans conformations. The frontier molecular orbital formalism predicts that strong pi-acids, which contain electron-withdrawing groups, tend to polarize sufficient charge density away from the metal center to effect the formation of the sterically less favorable but electronically stabilized cis conformer. Density functional theory calculations on similar complexes containing phosphines which do not impose severe steric contraints indicate that the balance between steric and electronic stabilization can be effectively predicted by comparing the relative energies of the ligand LUMOs.  相似文献   

4.
对钌联吡啶配合物及其单配体的4,4′ 双取代衍生物, 用量子化学密度泛函(DFT)方法在B3LYP/LanL2DZ水平上进行计算.探讨一些强的推电子基团(如-OCH3)和强的拉电子基团(如-NO2)的取代基效应对配合物的电子结构与相关性质,如配位键长、光谱性质等的影响规律,为该类配合物的合成,光、电、催化和生化作用机理分析提供理论参考.  相似文献   

5.
Theoretical studies on the complexes Ru(bpy)2L2+, Ru(phen)2L2+ (L=pytp,pztp) were carried out by using the density functional theory (DFT) method at B3LYP/LanL2DZ level. The relation between electronic structures and anti-cancer activities of complexes was investigated. The increasing of N in the main ligand can strengthen the interaction of complexes with DNA and anti cancer activities of complexes. The calculation results show that for complexes I-IV, their energies of LUMO orbital are in the order of εI>εII, εIII>εIV, the electron cloud components of LUMO come mainly from main ligands and the content distributing is in the order of I相似文献   

6.
Using 1,10-phenanthroline monohydrate and CuBr2 in molar ratios of 1:1 and 2:1, in CH3OH/H2O (ϕr = 1:1), the complexes [(phen)CuBr2]2, (I), and {[(phen)2CuBr]Br·H2O}, (II), have been prepared. The hydrogen bondings and aqua bridges between coordinated and noncoordinated bromides of II have been observed by XRD. Complex II has a triclinic crystal structure with distorted trigonal bipyramidal coordination geometry. Possibilities of ligand exchange with hydroxide or ammonia have been examined in both complexes. While the mononuclear complex II is stable in a refluxed ammonia solution and the complex {[phen)2CuBr]Br·3H2O}, (IV), trihydrate of II, is obtained; the binuclear complex I reacts with the ammonia solution to replace one of its bromides in the subunits with hydroxide to give {[(phen)2Cu2Br2(OH)2]·4H2O}, (III). Structural and electrical properties of the complexes have been investigated by elemental analysis, vibrational and electronic spectroscopy, mass spectrometry, TGA, XRD and the four-point probe method. The temperature coefficients of resistivity and the activation energies of the complexes have also been obtained. All complexes behave as intrinsic semiconductor in the temperature range of 310–440 K.  相似文献   

7.
Heating a suspension of the monomeric hydroxo palladium complex of the type [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, Me(2)bipy, phen or tmeda) in methylketone (acetone or methylisobutylketone) under reflux affords the corresponding ketonyl palladium complex [Pd(N-N)(C(6)F(5))(CH(2)COR)]. On the other hand, the reaction of the hydroxo palladium complexes [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, phen or tmeda) with diethylmalonate or malononitrile yields the C-bound enolate palladium complexes [Pd(N-N)(CHX(2))(C(6)F(5))](X = CO(2)Et or CN), and the reaction of [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy or phen) with nitromethane gives the nitromethyl palladium complexes [Pd(N-N)(CH(2)NO(2))(C(6)F(5))]. [Pd(tmeda)(C(6)F(5))(OH)] catalyses the cyclotrimerization of malononitrile. The crystal structures of [Pd(bipy)(C(6)F(5))(CH(2)COMe)].1/2Me(2)CO, [Pd(tmeda)(C(6)F(5))[CH(CO(2)Et)(2)]], [Pd(tmeda)(C(6)F(5))[CH(CN)(2)]] and [Pd(tmeda)(C(6)F(5))(CH(2)NO(2))].1/2CH(2)Cl(2) have been established by X-ray diffraction.  相似文献   

8.
The novel isoquinolin-1-ylidene ligands, introduced into Rh(I) complexes by exploiting the carbene-like reactivity of adducts , exhibit ligand properties similar to those of classic NHCs, and their electronic properties can be tuned by the introduction of electron-withdrawing or donating groups in the benzene ring.  相似文献   

9.
The electronic and nuclear structures of a series of [Cu(2,9-(X)2-phen)2]+ copper(I) complexes (phen=1,10-phenanthroline; X=H, F, Cl, Br, I, Me, CN) in their ground and excited states are investigated by means of density functional theory (DFT) and time-dependent (TD-DFT) methods. Subsequent Born-Oppenheimer molecular dynamics is used for exploring the T1 potential energy surface (PES). The T1 and S1 energy profiles, which connect the degenerate minima induced by ligand flattening and Cu−N bond symmetry breaking when exciting the molecule are calculated as well as transition state (TS) structures and related energy barriers. Three nuclear motions drive the photophysics, namely the coordination sphere asymmetric breathing, the well-documented pseudo Jahn-Teller (PJT) distortion and the bending of the phen ligands. This theoretical study reveals the limit of the static picture based on potential energy surfaces minima and transition states for interpreting the luminescent and TADF properties of this class of molecules. Whereas minor asymmetric Cu−N bonds breathing accompanies the metal-to-ligand-charge-transfer re-localization over one or the other phen ligand, the three nuclear movements participate to the flattening of the electronically excited complexes. This leads to negligible energy barriers whatever the ligand X for the first process and significant ligand dependent energy barriers for the formation of the flattened conformers. Born-Oppenheimer (BO) dynamics simulation of the structural evolution on the T1 PES over 11 ps at 300 K confirms the fast backwards and forwards motion of the phenanthroline within 200–300 fs period and corroborates the presence of metastable C2 structures.  相似文献   

10.
A variety of para-substituted NCN-pincer palladium(II) and platinum(II) complexes [MX(NCN-Z)] (M=Pd(II), Pt(II); X=Cl, Br, I; NCN-Z=[2,6-(CH(2)NMe(2))(2)C(6)H(2)-4-Z](-); Z=NO(2), COOH, SO(3)H, PO(OEt)(2), PO(OH)(OEt), PO(OH)(2), CH(2)OH, SMe, NH(2)) were synthesised by routes involving substitution reactions, either prior to or, notably, after metalation of the ligand. The solubility of the pincer complexes is dominated by the nature of the para substituent Z, which renders several complexes water-soluble. The influence of the para substituent on the electronic properties of the metal centre was studied by (195)Pt NMR spectroscopy and DFT calculations. Both the (195)Pt chemical shift and the calculated natural population charge on platinum correlate linearly with the sigma(p) Hammett substituent constants, and thus the electronic properties of predesigned pincer complexes can be predicted. The sigma(p) value for the para-PtI group itself was determined to be -1.18 in methanol and -0.72 in water/methanol (1/1). Complexes substituted with protic functional groups (CH(2)OH, COOH) exist as dimers in the solid state due to intermolecular hydrogen-bonding interactions.  相似文献   

11.
联吡啶Ir(Ⅲ)配合物电子结构及光谱性质的理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)对配合物Ir(ppy)2(N^N)+ [ppy=2-phenylpyrine, N^N=bpy= 2,2’-bipyridine(1); N^N=H2dcbpy=4.4’-dicarboxy-2,2’-bipyridine(2), N^N=Hcmbpy=4-carboxy-4’-methyl-2,2’-bipyridine(3)] 的基态和激发态几何构型进行优化, 通过TDDFT/B3LYP方法得到这些化合物在乙腈溶液中的吸收光谱和磷光发射光谱及其跃迁性质. 研究结果表明, 化合物1 (384 nm), 2(433 nm)和3 (413 nm) 最低的吸收谱被指认为MLCT/LLCT[dIr+π(ppy)→π*(N^N)]电荷跃迁. 化合物1(486 nm), 2(576 nm)和3 (567 nm)最低的磷光发射可以描述为[dIr+π(ppy)]→[π*(N^N)]跃迁. 这是由于联吡啶配体上吸电子基团的引入, 稳定了相应的空轨道, 导致了化合物2和3的吸收和发射光谱红移. 同时, 化合物非线性光学性质的计算结果表明, 三种化合物均具有较大的一阶超极化率(β), 联吡啶配体中吸电子基团的增加, 使得分子内电子转移增强, 导致一阶超极化率增大.  相似文献   

12.
以2,2,6,6-四甲基庚二酮(tmd)为辅助配体,2,4-二取代基苯基-4-甲基喹啉(2,4-2R-mpq)为主配体,在主配体中苯基的2位和4位同时引入氟(F)、甲氧基(MeO)或三氟甲基(CF3),合成出3个铱磷光配合物(2,4-2R-mpq)2Ir(tmd)(R=F (1)、MeO(2)、CF3(3))。通过元素分析、核磁共振谱和单晶X射线衍射表征了配合物的组成和分子结构。通过紫外可见吸收光谱、光致发光光谱和理论计算对配合物的光物理性能进行了研究。结果表明:3个配合物的晶体均为三斜晶系,空间群均为■,呈稍微扭曲的八面体构型。配合物1、2和3在溶液状态下的发射波长分别为570、582和604 nm,溶液中量子产率分别为96%、80%和80%。在主配体中苯基的2位和4位同时引入F或MeO,配合物电子云发生聚集,而引入CF3,配合物的电子云分散。与配合物3相比,配合物1和2的发射波长发生了显著的蓝移。  相似文献   

13.
合成了 7种草酸根桥联的 Cu 2 Fe 、Ni 2 Fe 、Co 2 Fe 异三核配合物 [M2 Fe(C2 O4) 3Lx](Cl O4) ,(M=Cu,L=bpy,Me2 phen,NO2 phen,x=2 ;M=Ni,Co,L=bpy,Me2 phen,x=4 ) .经元素分析、摩尔电导和磁性的测定以及红外光谱和电子光谱等方法对这些配合物进行了表征 ,确定了配合物的组成和结构 .初步生物活性试验表明形成异三核配合物后其杀菌活性明显提高  相似文献   

14.
A series of new mixed ligand penta-coordinated square pyramidal ruthenium(II) complexes containing benzaldehyde or its substituents and triphenylphosphine or triphenylarsine have been synthesized and characterized. In the electronic spectra, three well-defined peaks in the visible region were observed and assigned to d-d transitions in D(4h) and low spin axially distortion from O(h) symmetry. The spectrochemical parameters of the complexes were calculated and placed the ligands in the middle of the spectrochemical series. The redox properties and stability of the complexes toward oxidation were related to the electron-withdrawing or releasing ability of the substituent in the phenyl ring of the benzaldehyde. The electron-withdrawing substituents stabilized Ru(2+) complexes, while electron-donating groups favored oxidation to Ru(3+). The mechanism and kinetics of the catalytic oxidation of benzyl alcohol by the complex [RuCl(2)(Pph(3))(C(6)H(5)CHO)(2)] in the presence of N-methylmorpholine-N-oxide have also been studied.  相似文献   

15.
合成了7种草酸根桥联的CuⅡ2FeⅢ、NiⅡ2FeⅢ、CoⅡ2FeⅢ异三核配合物[M2Fe(C2O4)3Lx](ClO4),(M=Cu,L=bpy,Me2phen,NO2phen,x=2;M=Ni,Co,L=bpy,Me2phen,x=4).经元素分析、摩尔电导和磁性的测定以及红外光谱和电子光谱等方法对这些配合物进行了表征,确定了配合物的组成和结构.初步生物活性试验表明形成异三核配合物后其杀菌活性明显提高.  相似文献   

16.
Shivaiah V  Das SK 《Inorganic chemistry》2005,44(24):8846-8854
Two Anderson-type heteropolyanion-supported copper phenanthroline complexes, [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2]1+ (1c) and [Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2]1- (1a) complement their charges in one of the title compounds [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2][Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5H2O [1c][1a].5 H2O 1. Similar charge complementarity exists in the chromium analogue, [Cr(OH)6Mo6O18[Cu(phen)(H2O)2]2][Cr(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5 H2O [2c][2a].5 H2O 2. The chloride coordination to copper centers of 1a and 2a makes the charge difference. In both compounds, the geometries around copper centers are distorted square pyramidal and those around aluminum/chromium centers are distorted octahedral. Three lattice waters, from the formation of intermolecular O-H.....O hydrogen bonds, have been shown to self-assemble into an "acyclic water trimer" in the crystals of both 1 and 2. The title compounds have been synthesized in a simple one pot aqueous wet-synthesis consisting of aluminum/chromium chloride, sodium molybdate, copper nitrate, phenanthroline, and hydrochloric acid, and characterized by elemental analyses, EDAX, IR, diffuse reflectance, EPR, TGA, and single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group P. Crystal data for 1: a = 10.7618(6), b = 15.0238(8), c = 15.6648(8) angstroms, alpha = 65.4570(10), beta = 83.4420(10), gamma = 71.3230(10), V = 2182.1(2) angstroms3. Crystal data for 2: a = 10.8867(5), b = 15.2504(7), c = 15.7022(7) angstroms, alpha = 64.9850(10), beta = 83.0430(10), gamma = 71.1570(10), V = 2235.47(18) angstroms3. In the electronic reflectance spectra, compounds 1 and 2 exhibit a broad d-d band at approximately 700 nm, which is a considerable shift with respect to the value of 650-660 nm for a square-pyramidal [Cu(phen)2L] complex, indicating the coordination of [M(OH)6Mo6O18]3- POM anions (as a ligand) to the monophenanthroline copper complexes to form POM-supported copper complexes 1c, 1a, 2c, and 2a. The ESR spectrum of compound 1 shows a typical axial signal for a Cu2+ (d9) system, and that of compound 2, containing both chromium(III) and copper(II) ions, may reveal a zero-field-splitting of the central Cr3+ ion of the Anderson anion, [Cr(OH)6Mo6O18]3-, with an intense peak for the Cu2+ ion.  相似文献   

17.
Ligand-stabilized aluminum clusters are investigated by density functional theory calculations. Analysis of Kohn-Sham molecular orbitals and projected density of states uncovers an electronic shell structure that adheres to the superatom complex model for ligand-stabilized aluminum clusters. In this current study, we explain how the superatom complex electron-counting rule is influenced by the electron-withdrawing ligand and a dopant atom in the metallic core. The results may guide the prediction of new stable ligand-stabilized (superatom) complexes, regardless of core and electron-withdrawing ligand composition.  相似文献   

18.
Macrocyclic dicopper(II) complexes derived from 2,6-di(R)formylphenols and various linking diamines are surveyed and their magnetic and structural properties assessed. For those systems with "flat" dinuclear centers and no electronic perturbations associated with electron-withdrawing ligands or ligand groups, the complexes exhibit a "straight-line" relationship between exchange integral and phenoxide bridge angle. Within the angle range 98.8-104.7 degrees, 11 complexes are included with -2J in the range 689-902 cm(-)(1). When electron-withdrawing species are present, either as ligands or as groups bound to the macrocycle itself, considerable suppression of the antiferromagnetic exchange component is observed. Single-crystal X-ray diffraction studies are reported for three complexes. [Cu(2)(L1)(H(2)O)(2)]F(2)(CH(3)OH)(2) (1) crystallized in the triclinic system, space group P&onemacr;, with a = 8.1878(5) ?, b = 9.0346(7) ?, c = 10.4048(7) ?, alpha = 103.672(6) degrees, beta = 101.163(5) degrees, gamma = 104.017(5) degrees, and Z = 1. [Cu(2)(L2)Cl(2)] [Cu(2)(L2) (H(2)O)(2)]Cl(ClO(4)).5.5H(2)O (2) crystallized in the monoclinic system, space group P2(1)/n, with a = 14.4305(5) ?, b = 24.3149(8) ?, c = 18.6584(8) ?, beta = 111.282(3) degrees, and Z = 4. [Cu(2)(L3)(H(2)O)(2)](BF(4))(2) (3) crystallized in the triclinic system, space group P&onemacr;, with a = 8.6127(4) ?, b = 8.6321(7) ?, c = 10.8430(10) ?, a = 74.390(10) degrees, beta = 86.050(10) degrees, gamma = 76.350(10) degrees, and Z = 2. Square pyramidal copper ion stereochemistries are observed in all cases, with axially coordinated halogens or water molecules. Strong antiferromagnetic exchange is observed for all complexes (-2J = 784(8) cm(-)(1), Cu-O-Cu 103.65(10) degrees (1); -2J = 801(11) cm(-)(1), Cu-O-Cu 102.4(3), 107.5(3), 102.9(3), 106.1(3) degrees (2); -2J = 689(3) cm(-)(1), Cu-O-Cu 98.8(4) degrees (3)). The presence of electron-withdrawing CN groups on the periphery of the macrocyclic ligand leads to substantially reduced antiferromagnetic exchange.  相似文献   

19.
We report on the electronic structure of Ge(9)[Si(SiMe(3))(3)](3)(-). Systematic density functional theory analysis of the electronic shell structure of the cluster and its derivatives reveals that the Ge(9)[Si(SiMe(3))(3)](3)(-) and its neutral counterpart have electronic shells that can be explained using the superatom model. The ligand-core interaction of these complexes is distinctly different from previously identified gold, gallium, and aluminium superatom complexes, indicating an electron-donating rather than electron-withdrawing ligand. We modify the electron-counting rule for this case and introduce a simple picture for superatom and superantiatom complexes. Discussions comparing shell models, Zintl clusters, the superhalogen Al(13) and superatom complexes to Ge(9)[Si(SiMe(3))(3)](3)(-) are presented.  相似文献   

20.
Abstract

The ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ (where M is the same and M = FeII or NiII, phen = 1,10-phenanthroline, DIP = 4,7-diphenyl-1,10-phenanthroline) has been investigated by reversed phase ion-paired chromatography (RP-IPC). The effect of pH and solvent on the ligand-exchange reaction is studied by monitoring the variation in chromatograms with time after mixing. The results have shown that the ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ takes place in the pH range of 3–8 and the rate of reaction for nickel(II) complexes is about two times slower than that for iron(II) complexes. Experiments on the effect of various solvents on the ligand-exchange reaction have revealed that the rate of reaction is enhanced by the solvent in the following order: (CH3)2CO > CHCl3 ≥ CH2Cl2 > CH3CN > CH3OH. Elemental analysis and UV-visible spectroscopy confirmed that the products obtained from the ligand-exchange reaction are mixed-ligand complexes containing phen and DIP ligands, i.e., [M(phen)2(DIP)]2+ and [M(phen)(DIP)2]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号