首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An accumulation layer is formed on the emitter side of a biased resonant tunneling diode (RTD) leading to a similar subband structure as in the ordinary MOS-system. Electrons occupying the subbands can tunnel through the RTD-structure and give rise to a significant contribution to the diode current. We calculate the subband current from our semiclassical transport model developed earlier for the ordinary tunneling current. The model includes quantum interference and bulk scattering by utilizing an optical approximation for the coherent part of the wave function. The subband current turns out to be of the same order of magnitude as the ordinary tunneling current component. It is shifted to higher voltages and therefore it increases the valley current. In order to reduce the subband current and improve the peak-to-valley current ratio (PVCR), we propose a novel RTD-structure with a grading in front of the emitter barrier. The purpose of the grading is to suppress the formation of the accumulation layer and thereby decrease the valley current. Calculations show that PVCR increases by a factor of two using a proper design of the grading.  相似文献   

2.
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.  相似文献   

3.
The bipolar tunneling transport through p–i–n double barrier structures has been studied by means of simultaneous electrical transport measurements and electroluminescence spectroscopy. An “inverted” hysteresis loop is observed at the onset of the first electronic resonance in the current–voltage characteristics with an electrical ON/OFF ratio of more than two orders of magnitude. Relating the different branches of the current–voltage characteristic to the space charges accumulated throughout the structure the inverted hysteresis loop is interpreted in terms of an S-shaped current bistability. The S-shaped current bistability is similar to the current driven negative differential resistivity as known for instance from thyristor action. This analogy between the bipolar double barrier structure with alloyed n-type emitter and the thyristor will be briefly discussed.  相似文献   

4.
The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.  相似文献   

5.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from +1 to −1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current.  相似文献   

6.
The effects of the quantum inductance, due to the resonance lifetime of an electron in a double barrier potential, are studied in the equivalent circuit model of a resonant tunneling diode. Regions of stable and unstable circuit behavior are obtained through a small signal analysis, and phase diagrams are found using a pseudo-Monte Carlo simulation. A comparison with a previous model is made. In addition the large signal behavior of the circuit model is investigated, and a reduction in the maximum oscillator frequency is demonstrated.  相似文献   

7.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.  相似文献   

8.
We have observed the BCS-like density of states predicted for energy-gap suppression by nonmagnetic Anderson impurities in superconductors. We show that Mn impurities in Al exhibit no magnetic character and act exclusively as strong resonant scattering sites without producing time-reverse symmetry breaking of Cooper pairs (pair breaking).  相似文献   

9.
We have proposed a monolithically integrated chirp-managed laser (CML) that consists of a directly modulated single-mode DFB laser and an optical spectrum reshaper (OSR) filter based on a double-slanted-trench resonant tunneling structure (DST-RTS). Slanted trenches facilitates the occurrence of resonant tunneling effect, which produces a steep-edge narrow-band OSR filter, and meanwhile directing most of the reflected waves out of the laser cavity, consequently eliminating the need of an isolator. Characteristics of the DST-RTS filter have been investigated and simulation results show that the proposed 25 Gbps 1.55 μm CML can send signal over 22 km standard single-mode fiber for bit error rate of 10?12.  相似文献   

10.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

11.
We have studied the current transport and magnetism in epitaxial hybrid superconducting mesa structures consisting of a cuprate superconductor and superconducting niobium with a manganite LaMnO3 (LMO) interlayer. We have shown experimentally using magnetic resonance that the magnetization, magnetic anisotropy parameters, and transition temperature to the ferromagnetic state of the interlayer of the structures are analogous to those of an autonomous LMO film grown on a neodymium gallate substrate. The estimate of the barrier height obtained from the dependence of the characteristic resistance of mesa structures on the interlayer thickness has shown the barrier height variation with the thickness in the range of 5–30 mV. The temperature dependences of the conductivity of the mesa structure in the range between superconducting transition temperatures of the superconductors can be described in the theory taking into account the d-wave nature of the superconductivity for one of the electrodes and the spin-filtering of carriers passing through the tunnel interlayer. Spin-filtering is confirmed by the tunnel magnetoresistance and the high sensitivity of mesa structures to a weak external magnetic field in a voltage interval smaller than the gap of niobium.  相似文献   

12.
13.
We experimentally studied the photocurrent of AlAs/GaAs/AlAs double barrier resonant tunneling diode (RTD), which is composed of an InAs layer of self-assembled quantum-dots on top of AlAs barrier layer. It is found that the charging InAs quantum dots can effectively modulate the carrier transport properties of the RTD. Moreover, we also found that the resonant tunneling current through a single energy level of an individual quantum dot is extremely sensitive to the photo-excited holes bound nearby the dot, and the presence of the holes lowers the electrostatic energy of the quantum dot state. In addition, it is also observed that the photocurrent behaves like step way with the individual photon pulse excitation when the illumination is low enough. The experiment results well demonstrated the quantum amplified characteristics of the device.  相似文献   

14.
Short-duration electrical pulses play important roles in ultrafast time-domain metrology: they are used to sample rapidly varying signals or as probe signals in ranging radars, time-domain reflectometry and in communication. In this work, we design a nonlinear transmission, which is loaded with resonant tunneling diode to be suitable for microwave A/D conversion. A resonant tunneling diode (RTD) has a negative differential resistance that means when the voltage increases the current decreases. The equivalent circuit of monostable line is given. The simulation is performed by using OrCad program. Results show that a spike is produced and after a charging time constant, another switching occurs. Hence – similar to a relaxation oscillator – the spiking period is determined by the amplitude and frequency of the input current. The transmission line itself ensures the generation and propagation of identical spikes, such as solitons formed after few diodes.  相似文献   

15.
Simple device structures incorporating resonant tunneling diodes (RTDs) are considered in terms of electrical models and the EC-RTS-NANODEV software suite. It is shown that the structures can be used in multilevel logic, frequency converters, and generators of harmonic, relaxation, and chaotic signals.  相似文献   

16.
Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current--voltage characteristics change as a function of external stress, which is regarded as meso-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based micro-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g.  相似文献   

17.
The rectification of spin current driven by a temperature difference in a simple model consisting of a quantum dot connected to two ferromagnetic leads has been studied using the rate equation technique. In addition to the dot level, the magnitude of thermospin current rectification depends on the temperature bias across the system, the asymmetry parameter and the Coulomb charging energy, where the last two parameters are necessary conditions for rectification to occur in the system. The thermospin current rectification becomes analytically simplified at the limitation condition of asymmetry. With an applied Zeeman magnetic field, an ideal 100%100% rectification of thermospin current can be obtained at specific dot energies, which can be controlled by an external gate voltage.  相似文献   

18.
设计了一种三芯光子晶体光纤带通滤波器结构.利用纤芯间的谐振耦合,实现了滤波.当3个纤芯基模模式有效折射率在同一频率点实现匹配时,将产生谐振现象.通过合理选取光纤结构参数,可以使3个模式满足谐振条件.由于3个纤芯基模只在工作波长处实现有效折射率的匹配,因而纤芯间发生波长的选择性耦合.应用全矢量光束传播法(BPM)分析了这种光纤带通滤波器的性能.结果表明:在1.55 μm工作波长上,光纤耦合长度为22.8 mm;在损耗低于-3 dB前提下,通带带宽为8.9 nm.  相似文献   

19.
The concept of a resonant tunneling photonic nanotriode that allows the mutual all-optical control of cross-cut light flows is developed. The concept is based on the strong resonant interaction between the quasi-localized eigenmode of nonlinear planar dielectric waveguides and incident beams. It is demonstrated that small variations of input guided wave intensities may result in deep modulation of beam reflection and transmission coefficients.  相似文献   

20.
Spin related conductance and polarization via an open ballistic quantum nanoringconnected to one input lead and two output ones are studied by considering the Rashbaeffect based on the transfer matrix method. Our probes show that controlling on Rashbastrength leads to 100 percent spin polarization while we have high efficiency for thesystem. In addition, it is possible to design the position of input and output leads insuch a way as to optimize the system to work as a spin filtering or spin switching nanodevice. Also, this apparatus can work as a Stern-Gerlach tool which can be used in someimportant practical nano-industrial applications. By controlling on Rashba strength in aspecial design of two output lead positions, it is possible to divide the input chargecurrent into any output ones while the partial output charge current has substantial valuein one of two output leads and it is reduced in the other one simultaneously. Bycontrolling on Rashba strength in a special design of output lead positions, the spinconductance can attain a considerable value in one output lead despite an insignificantvalue in the other one simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号