首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Casimir effect is a force arising in the macroscopic world as a result of radiation pressure of vacuum fluctuations. It thus plays a key role in the emerging domain of nano-electro-mechanical systems (NEMS). This role is reviewed in the present paper, with discussions of the influence of the material properties of the mirrors, as well as the geometry dependence of the Casimir effect between corrugated mirrors. In particular, the lateral component of the Casimir force and restoring torque between metal plates with misaligned corrugations are evaluated.  相似文献   

2.
The first holographic measurements are reported of the force between macroscopic objects mediated by zero-point electromagnetic fluctuations (Casimir force). A holographic interferometer is used to measure mirror oscillations with an amplitude of 1 pm. The objects under study are two thin metal films deposited on dielectric substrates. When one film is periodically oscillated, the first and second harmonics of the Casimir force acting on the other are detected. For the first time, an order-of-magnitude estimate is obtained for the Casimir force by using radiation pressure as a natural reference scale. The discrepancy between calculated and measured values of the Casimir force may be attributed to the small thickness and low conductivity of the metal films.  相似文献   

3.
We argue that the appropriate variable to study a nontrivial geometry dependence of the Casimir force is the lateral component of the Casimir force, which we evaluate between two corrugated metallic plates outside the validity of the proximity-force approximation. The metallic plates are described by the plasma model, with arbitrary values for the plasma wavelength, the plate separation, and the corrugation period, the corrugation amplitude remaining the smallest length scale. Our analysis shows that in realistic experimental situations the proximity-force approximation overestimates the force by up to 30%.  相似文献   

4.
The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest.  相似文献   

5.
Anushree Roy  U Mohideen 《Pramana》2001,56(2-3):239-243
Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.  相似文献   

6.
We report measurements of the Casimir force between a gold sphere and a silicon surface with an array of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distances between 150 and 500 nm, the measured force shows significant deviations from the pairwise additive formulism, demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces, possibly due to the interplay between finite conductivity and geometry effects.  相似文献   

7.
We derive an exact solution for the Casimir force between two arbitrary periodic dielectric gratings and illustrate our method by applying it to two nanostructured silicon gratings. We also reproduce the Casimir force gradient measured recently [H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M. Mansfield, and C. S. Pai, Phys. Rev. Lett. 101, 030401 (2008)10.1103/PhysRevLett.101.030401] between a silicon grating and a gold sphere taking into account the material dependence of the force. We find good agreement between our theoretical results and the measured values both in absolute force values and the ratios between the exact force and proximity force approximation predictions.  相似文献   

8.
We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material.  相似文献   

9.
The possibility of mechanical detection of Casimir friction with the use of a noncontact atomic force microscope is discussed. A SiO2 probe tip located above a graphene-coated SiO2 substrate is subjected to the frictional force caused by a fluctuating electromagnetic field produced by a current in graphene. This frictional force will create the bend of a cantilever, which can be measured by a modern noncontact atomic force microscope. Both the quantum and thermal contributions to the Casimir frictional force can be measured using this experimental setup. This result can also be used to mechanically detect Casimir friction in micro- and nanoelectromechanical systems.  相似文献   

10.
The Casimir force between two parallel magnetodielectric slabs is investigated by means of Casimir–Lifshitz Theory. For two magnetodielectric slabs, one is permittivity-negative, while the other is permeability-negative in the real frequency space. Numerical results show that when the separation between these two slabs is small (or large), the Casimir force is repulsive, while for the intermediate separation, the Casimir force is attractive. As a consequence, there are two equilibria with zero Casimir force, and a repulsive–attractive–repulsive transition takes place with increasing the separation. Therefore, if the separation between two interacting slabs is manipulated in the small (or large) separation region, it is possible to overcome the stiction in micromechanical and nanomechanical systems.  相似文献   

11.
The analysis of all Casimir force experiments using a sphere-plate geometry requires the use of the proximity-force approximation (PFA) to relate the Casimir force between a sphere and a flat plate to the Casimir energy between two parallel plates. Because it has been difficult to assess the PFA's range of applicability theoretically, we have conducted an experimental search for corrections to the PFA by measuring the Casimir force and force gradient between a gold-coated plate and five gold-coated spheres with different radii using a microelectromechanical torsion oscillator. For separations z<300 nm, we find that the magnitude of the fractional deviation from the PFA in the force gradient measurement is, at the 95% confidence level, less than 0.4z/R, where R is the radius of the sphere.  相似文献   

12.
We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from −∞ to 0 when the separation a between the piston and the opposite wall increases from 0 to ∞. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan–Boltzmann (or black-body radiation) term which is of order T d+1, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical →0 limit. Explicit formulas for the classical limit are computed.  相似文献   

13.
《Physics letters. [Part B]》2006,643(6):311-314
The Casimir effect for parallel plates in the presence of compactified universal extra dimensions within the frame of Kaluza–Klein theory is analyzed. Having regularized and discussed the expressions of Casimir force in the limit, we show that the nature of Casimir force is repulsive if the distance between the plates is large enough and the higher-dimensional spacetime is, the greater the value of repulsive Casimir force between plates is. The repulsive nature of the force is not consistent with the experimental phenomena.  相似文献   

14.
The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like $\delta>\frac{1}{2}$ to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.  相似文献   

15.
A Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in high-dimensional spacetimes within the frame of Kaluza–Klein theory is analyzed. We derive and calculate the exact expression for the Casimir force on the piston. We also compute the Casimir force in the limit that one outer plate is moved to the extremely distant place to show that the reduced force is associated with the properties of additional spatial dimensions. The more dimensionality the spacetime has, the stronger the extra-dimension influence is. The Casimir force for the piston in the model including a third plate under the background with extra compactified dimensions always keeps attractive. Further we find that when the limit is taken the Casimir force between one plate and the piston will change to be the same form as the corresponding force for the standard system consisting of two parallel plates in the four-dimensional spacetimes if the ratio of the plate-piston distance and extra dimensions size is large enough.  相似文献   

16.
The dependence of the thermal component of the Casimir force and Casimir friction between graphene sheets on the drift velocity of charge carriers in one of the sheets has been analyzed. It has been shown that the drift motion results in the measurable change in the thermal Casimir force owing to the Doppler effect. The thermal Casimir force, as well as Casimir friction, increases strongly in the case of resonant photon tunneling, when the energy of an emitted photon coincides with the excitation energy of an electron-hole pair. In the case of resonant photon tunneling, the dominant contribution to the Casimir friction even at temperatures above room temperature comes from quantum friction caused by quantum fluctuations. Quantum friction can be detected in an experiment on the friction drag between graphene sheets in a high electric field.  相似文献   

17.
The infrared behaviour of quantum field theories confined in bounded domains is strongly dependent on the shape and structure of space boundaries. The most significant physical effect arises in the behaviour of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary conditions depending on four parameters. The analysis provides a powerful method to identify which boundary conditions generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We also show that the attractive regime holds far beyond identical boundary conditions for the two plates required by the Kenneth–Klich theorem and that the strongest attractive Casimir force appears for periodic boundary conditions whereas the strongest repulsive Casimir force corresponds to anti-periodic boundary conditions. Most of the analysed boundary conditions are new and some of them can be physically implemented with metamaterials.  相似文献   

18.
Casimir effect is the attractive force which acts between two plane parallel, closely spaced, uncharged, metallic plates in vacuum. This phenomenon was predicted theoretically in 1948 and reliably investigated experimentally only in recent years. In fact, the Casimir force is similar to the familiar van der Waals force in the case of relatively large separations when the relativistic effects come into play. We review the most important experiments on measuring the Casimir force by means of torsion pendulum, atomic force microscope and micromechanical torsional oscillator. Special attention is paid to the puzzle of the thermal Casimir force, i.e. to the apparent violation of the third law of thermodynamics when the Lifshitz theory of dispersion forces is applied to real metals. Thereafter we discuss the role of the Casimir force in nanosystems including the stiction phenomenon, actuators, and interaction of hydrogen atoms with carbon nanotubes. The applications of the Casimir effect for constraining predictions of extra-dimensional unification schemes and other physics beyond the standard model are also considered.  相似文献   

19.
We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号