首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Structural, spectroscopic and theoretical evidence indicate that an unusual alpha-C-C agostic interaction is preferred over both alpha- and beta-C-H agostic alternatives in the title compound, TpMe2NbCl(c-C3H5)(MeCCMe).  相似文献   

2.
The bis(ethylene) Rh species TpMe2Rh(C2H4)2(1*) (TpMe2 = tris(3,5-dimethyl-1-pyrazol-1-yl)hydroborate) has been obtained from [RhCl(C2H4)2]2 and KTpMe2. Complex 1* easily decomposes in solution to give mainly the butadiene species TpMe2Rh(eta74-C4H6). In the solid state its thermal decomposition follows a different course and the allyl TpMe2RhH(syn-C3H4Me) is cleanly obtained as a mixture of exo and endo isomers. The complexes Tp'Rh(C2H4)2 (Tp' = Tp, TpMe2) afford the monosubstituted species Tp'Rh(C2H4)(PR3) upon reaction with PR3 but react differently with L = CO or CNR: the Tp compound gives dinuclear [TpRh]2(mu-L)3 complexes, while, in the case of 1*, TpMe2Rh(C2H4)(L) species are obtained. The ethylene ligand of complexes TpMe2Rh(C2H4)(PR3) is labile, and several peroxo compounds of composition TpMe2Rh(O2)(PR3) have been isolated by their reaction with O2. All the mononuclear Rh(I) complexes are formulated as 18e- trigonal bipyramidal species on the basis of IR and NMR spectroscopic studies. A series of dihydride complexes of Rh(III) of formulation Tp'RhH2(PR3) have been prepared by the hydrogenation of the corresponding ethylene derivatives. Complexes [TpRh]2(mu-CNCy)3, TpMe2Rh(C2H4)(PEt3), and TpMe2Rh(O2)(PEt3) have been further characterized by X-ray diffraction studies.  相似文献   

3.
Tin silicate species have shown good catalytic activity in various oxidation reactions. In an attempt to mimic surface tin species, several tin containing silsesquioxanes have been synthesized. Incompletely condensed silsesquioxanes (c-C5H9)7Si7O9(OH)3 and (c-C5H9)7Si7O9(OSiMe3)(OH)2 were reacted with common tin-precursors, which afforded several silsesquioxane ligated tin compounds. Divalent stannasilsesquioxanes form dimers of the type [(c-C5H9)7Si7O11(OX)Sn]2(X=H, SiMe3) with three-coordinated tin centers. The three-coordinated tin(II) are hydrolytically unstable whereas the octahedrally surrounded tetravalent stannasilsesquioxanes [(c-C5H9)7Si7O11(OX)]Sn(acac)2(X=H, OSiMe3) are hydrolytically robust. An unprecedented anionic trimeric cluster, [[(c-C5H9)7Si7O12Sn]3(mu2-OH)3(mu3-OH)]-[HNEt3]+, stabilized by bridging hydroxyl groups was formed when the product formed upon reacting (c-C5H9)7Si7O9(OH)3 with SnCl4 was slowly hydrolyzed. The stannasilsesquioxanes showed no catalytic activity in oxidation reactions.  相似文献   

4.
Vinylogs of fulvalenes with cyclopropenyl and cyclopentadienyl moieties attached either to different carbon atoms ( c-C 3H 2CHCHC 5H 4- c, 7) or to the same carbon atom [XC( c-C 3H 2)( c-C 5H 4), 10] [X = CH 2; C(CN) 2; C(NH 2) 2; C(OCH 2) 2; O; c-C 3H 2; c-C 5H 4; SiH 2; CCl 2] of the double bond inserted between the two rings are examined theoretically at the B3LYP/6-311G(d,p) level. Both types of compounds are shown to possess aromaticity, which was called "push-pull" and "captodative" aromaticity, respectively. For the captodative mesoionic structures XC( c-C 3H 2)( c-C 5H 4), the presence of both the two aromatic moieties and the CC double bond is the necessary and sufficient condition for their existence as energetic minima on the potential energy surface. Aromatic stabilization energy (ASE) was assessed by the use of homodesmotic reactions and heats of hydrogenation. Spatial magnetic criteria (through space NMR shieldings, TSNMRS) of the two types of vinylogous fulvalenes 7 and 10 have been calculated by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept of Paul von Rague Schleyer, and visualized as iso-chemical-shielding surfaces (ICSS) of various sizes and directions. TSNMRS values can be successfully employed to visualize and quantify the partial push-pull and captodative aromaticity of both the three- and five-membered ring moieties. In addition, the push -pull effect in compounds 7 and 10 could be quantified by the occupation quotient pi* CC/pi CC of the double bond inserted between the two rings.  相似文献   

5.
The reaction of the half-open titanocene, Ti(C5H5)(c-C8H11)(PMe3) (c-C8H11 = cyclooctadienyl), with two equivalents of PhC2SiMe3 leads to their incorporation and coupling to the dienyl fragment. One alkyne inserts into a C-H bond of the central CH2 group of the c-C8H11 ligand's edge-bridge, while the second undergoes a 5+2 coupling with the dienyl fragment, yielding coordinated sigma-allyl and olefin fragments, as demonstrated by X-ray diffraction. Together with the C5H5 and PMe3 coordinations, this leads to a 14-electron count. While the very electron-deficient titanium center passes up potential pi coordination of the allyl fragment, it instead engages in interactions with one or two C-C bonds, and perhaps a C-H bond, as revealed from the structural and spectroscopic data. Similar interactions have been found in electron-deficient metallacyclobutane complexes of titanium and zirconium, but not in the 18-electron molybdenum and tungsten analogues. These and other observations may have implications relating to metatheses and polymerizations of olefins.  相似文献   

6.
Isotropic and anisotropic ESR spectra were observed for the radical anions of hexafluorocyclobutene (c-C(4)F(6)(-)), octafluorocyclopentene (c-C(5)F(8)(-)) and perfluoro-2-butene (CF(3)CF=CFCF(3)(-)) in gamma-irradiated plastically crystalline neopentane, tetramethylsilane (TMS) and TMS-d(12) matrices, or the rigid 2-methyltetrahydrofuran (MTHF) matrix. The isotropic spectra of c-C(4)F(6)(-) and c-C(5)F(8)(-) are characterized by three different sets of pairs of (19)F nuclei with the isotropic hyperfine (hf) splittings of 15.2 (2F), 6.5 (2F), 1.1 (2F) mT for c-C(4)F(6)(-) and 14.7 (2F), 7.4 (2F), 1.0 (2F) mT for c-C(5)F(8)(-). By comparison with the results of ab initio quantum chemical computations, the large triplet (19)F hf splittings of ca. 15 mT are assigned to the two fluorines attached to the C=C bond. The UHF, B3LYP and MP2 computations predict that the geometrical structures of the perfluoroalkenes are strongly distorted by one-electron reduction to form their radical anions; c-C(3)F(4)(-): C(2) symmetry ((2)A state) <-- C(2)(v) ((1)A(1)), c-C(4)F(6)(-): C(1) ((2)A) <-- C(2)(v) ((1)A(1)) and c-C(5)F(8)(-): C(1) ((2)A) <-- C(s) ((1)A'). The structural distortion arises from a mixing of the pi* and higher-lying sigma* orbitals at the C=C carbons similar to that previously found for CF(2)=CF(2)(-) with a C(2)(h) distortion. The isotropic (19)F hf splittings computed with the B3LYP method with 6-311+G(2df,p) basis set for the geometry optimized by the UHF and/or MP2 methods are within 6% error of the experimental values. The experimental anisotropic spectra of c-C(4)F(6)(-), c-C(5)F(8)(-) and CF(2)=CF(2)(-) were satisfactorily reproduced by the ESR spectral simulation method using the computed hf principal values and orientation of (19)F nuclei. In addition, the electronic excitation energies and oscillator strengths for the CF(2)=CF(2)(-), c-C(3)F(4)(-), c-C(4)F(6)(-) and c-C(5)F(8)(-) radical anions were computed for the first time by TD-DFT methods.  相似文献   

7.
Anisotropic electron spin resonance (ESR) spectra are reported for the radical anions of hexafluorocyclopropane (c-C(3)F(6)(-)), octafluorocyclobutane (c-C(4)F(8)(-)), and decafluorocyclopentane (c-C(5)F(10)(-)) generated via gamma-irradiation in plastically crystalline tetramethylsilane (TMS) and rigid 2-methyltetrahydrofuran (MTHF) matrices. By combining the analysis of these experimental ESR spectra involving anisotropic hyperfine (hf) couplings with a series of quantum chemical computations, the geometrical and electronic structure of these unusual perfluorocycloalkane radical anions have been characterized more fully than in previous studies that considered only the isotropic couplings. Unrestricted Hartree-Fock (UHF) computations with the 6-311+G(d,p) basis set predict planar ring structures for all three radical anions, the ground electronic states being (2)A(2)(") for c-C(3)F(6)(-) (D(3h) symmetry), (2)A(2u) for c-C(4)F(8)(-) (D(4h)), and (2)A(2)(") for c-C(5)F(10)(-) (D(5h)), in which the respective six, eight, and ten 19F-atoms are equivalent by symmetry. A successful test of the theoretical computation is indicated by the fact that the isotropic 19F hf couplings computed by the B3LYP method with the 6-311+G(2df,p) basis set for the optimized geometries are in almost perfect agreement with the experimental values: viz., 19.8 mT (exp) vs 19.78 mT (calc) for c-C(3)F(6)(-); 14.85 mT (exp) vs 14.84 mT (calc) for c-C(4)F(8)(-); 11.6 mT (exp) vs 11.65 mT (calc) for c-C(5)F(10)(-). Consequently, the same computation method has been applied to calculate the almost axially symmetric anisotropic 19F hf couplings for the magnetically equivalent 19F atoms: (-4.90 mT, -4.84 mT, 9.75 mT) for c-C(3)F(6), (-3.54 mT, -3.48 mT, 7.02 mT) for c-C(4)F(8)(-), and (-2.62 mT, -2.56 mT, 5.18 mT) for c-C(5)F(10)(-). ESR spectral simulations performed using the computed principal values of the hf couplings and the spatial orientations of the 19F nuclei as input parameters reveal an excellent fit to the experimental anisotropic ESR spectra of c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-), thereby providing a convincing proof of the highly symmetric D(nh) structures that are predicted for these negative ions. Furthermore, using the computed 19F principal values and their orientations, the effective 19F anisotropic hf couplings along the molecular symmetry axes were evaluated for c-C(3)F(6)(-) and c-C(4)F(8)(-) and successfully correlated with the positions of the characteristic outermost features in both the experimental and calculated anisotropic spectra. In addition, the electronic excitation energies and oscillator strengths for the c-C(3)F(6)(-) , c-C(4)F(8)(-), and c-C(5)F(10)(-) radical anions were computed for the first time using time-dependent density functional theory (TD-DFT) methods.  相似文献   

8.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

9.
The incompletely condensed monosilylated silsesquioxanes (c-C5H9)7Si7O9(OSiRR'2)(OH)2 (SiRR'2 = SiMe3, SiMe2C(H)CH2, SiMePh2) were reacted with SiCl(4) in the presence of an amine which yielded the dichloro compounds (c-C5H9)7Si7O9(OSiRR'2)O2SiCl2 (1-3). These compounds could be hydrolyzed into the corresponding silsesquioxanes containing geminal silanols, (c-C5H9)7Si7O9(OSiRR'2)O2Si(OH)2 (4-6). At elevated temperatures, the geminal silsesquioxanes 4 and 5 undergo condensation reactions and form the closed-cage silsesquioxane monosilanol, (c-C5H9)7Si8O12(OH). The more sterically hindered geminal silsesquioxane 6 undergoes in solution intermolecular dehydroxylation, yielding the thermodynamically stable dimeric disilanol, [(c-C5H9)7Si7O9(OSiMePh2)(O2Si(OH)-)]2-(mu-O) (7). NMR and FT-IR studies show that the two silanols of the geminal silsesquioxanes 4-6 are different from each other with respect to hydrogen bonding, both in solution and in the solid state. Hydrogen bonding of the geminal silanol-containing silsesquioxanes was examined and compared to hydrogen bonding in silsesquioxanes possessing vicinal or isolated silanol groups. The relative Br?nsted acidity of the geminal silanols was determined using pK(ip) (ion-pair acidity) measurements in THF with UV-vis. These acidities were compared with those of other silsesquioxanes containing silanol groups. Acidities of 4-6 were found to be among the lowest known for silsesquioxanes.  相似文献   

10.
Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps. Additionally, during the course of these studies a new polycyclic compound (ArGe)(2)(C(7)H(12)) (10) was obtained in 60% yield from the reaction of 1,6-heptadiene and 1 via double [2 + 2] cycloaddition and gives evidence for a nonradical mechanism for these types of reactions.  相似文献   

11.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

12.
The crossed beam reactions of the methylidyne radical with ethylene (CH(X(2)Π) + C(2)H(4)(X(1)A(1g))), methylidyne with D4-ethylene (CH(X(2)Π) + C(2)D(4)(X(1)A(1g))), and D1-methylidyne with ethylene (CD(X(2)Π) + C(2)H(4)(X(1)A(1g))) were conducted at nominal collision energies of 17-18 kJ mol(-1) to untangle the chemical dynamics involved in the formation of distinct C(3)H(4) isomers methylacetylene (CH(3)CCH), allene (H(2)CCCH(2)), and cyclopropene (c-C(3)H(4)) via C(3)H(5) intermediates. By tracing the atomic hydrogen and deuterium loss pathways, our experimental data suggest indirect scattering dynamics and an initial addition of the (D1)-methylidyne radical to the carbon-carbon double bond of the (D4)-ethylene reactant forming a cyclopropyl radical intermediate (c-C(3)H(5)/c-C(3)D(4)H/c-C(3)H(4)D). The latter was found to ring-open to the allyl radical (H(2)CCHCH(2)/D(2)CCHCD(2)/H(2)CCDCH(2)). This intermediate was found to be long lived with life times of at least five times its rotational period and decomposed via atomic hydrogen/deuterium loss from the central carbon atom (C2) to form allene via a rather loose exit transition state in an overall strongly exoergic reaction. Based on the experiments with partially deuterated reactants, no compelling evidence could be provided to support the formation of the cyclopropene and methylacetylene isomers under single collision conditions. Likewise, hydrogen/deuterium shifts in the allyl radical intermediates or an initial insertion of the (D1)-methylidyne radical into the carbon-hydrogen/deuterium bond of the (D4)-ethylene reactant were found to be-if at all-of minor importance. Our experiments propose that in hydrocarbon-rich atmospheres of planets and their moons such as Saturn's satellite Titan, the reaction of methylidyne radicals should lead predominantly to the hitherto elusive allene molecule in these reducing environments.  相似文献   

13.
A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda=662 nm and NO2 at lambda=404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P approximately 5 Torr and T approximately 295 K. Values of the rate constants obtained were (k/10(-12) cm3 molecule-1 s-1): CH3O2 (1.1+/-0.5), C2H5O2 (2.3+/-0.7), CH2FO2 (1.4+/-0.9), CH2ClO2 (3.8(+1.4)(-2.6)), c-C5H9O2 (1.2(+1.1)(-0.5)), c-C6H11O2 (1.9+/-0.7), CF3O2 (0.62+/-0.17) and CF3CFO2CF3 (0.24+/-0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.  相似文献   

14.
Compounds of rhodium(I) and rhodium(III) that contain ancillary hydrotris(pyrazolyl)borate ligands (Tp') react with monodentate and bidentate tertiary phosphanes in a step-wise manner, with incorporation of P-donor atoms and concomitant replacement of the Tp' pyrazolyl rings. Accordingly, [Rh(kappa3-TpMe2)(C2H4)(PMe3)] (1b), converts initially into [Rh(kappa2-TpMe2)-(PMe3)2] (3), and then into [Rh(kappa1-TpMe2)-(PMe3)3] (2) upon interaction with PMe3 at room temperature, in a process which can be readily reversed under appropriate experimental conditions. Full disengagement of the Tp' ligand is feasible to give Tp' salts of rhodium(I) complex cations, for example, [Rh(CO)(dppp)2]-[TpMe2,4-Cl] (5; dppp = Ph2P(CH2)3PPh2), or [Rh(dppp)2][TpMe2,4-Cl] (6). Bis(hydride) derivatives of rhodium(III) exhibit similar substitution chemistry, for instance, the neutral complex [Rh(Tp)-(H)2(PMe3)] reacts at 20 degrees C with an excess of PMe3 to give [Rh(H)2-(PMe3)4][Tp] (9b). Single-crystal X-ray studies of 9b, conducted at 143 K, demonstrate the absence of bonding interactions between the [Rh(H)2(PMe3)4]+ and Tp ions, the closest Rh...N contact being at 4.627 A.  相似文献   

15.
Mid-infrared photodissociation spectra of mass selected C(3)H(3)(+)-N(2) ionic complexes are obtained in the vicinity of the C-H stretch fundamentals (2970-3370 cm(-1)). The C(3)H(3)(+)-N(2) dimers are produced in an electron impact cluster ion source by supersonically expanding a gas mixture of allene, N(2), and Ar. Rovibrational analysis of the spectra demonstrates that (at least) two C(3)H(3)(+) isomers are produced in the employed ion source, namely the cyclopropenyl (c-C(3)H(3)(+)) and the propargyl (H(2)CCCH(+)) cations. This observation is the first spectroscopic detection of the important c-C(3)H(3)(+) ion in the gas phase. Both C(3)H(3)(+) cations form intermolecular proton bonds to the N(2) ligand with a linear -C-H...N-N configuration, leading to planar C(3)H(3)(+)-N(2) structures with C(2v) symmetry. The strongest absorption of the H(2)CCCH(+)-N(2) dimer in the spectral range investigated corresponds to the acetylenic C-H stretch fundamental (v(1) = 3139 cm(-1)), which experiences a large red shift upon N(2) complexation (Delta(v1) approximately -180 cm(-1)). For c-C(3)H(3)(+)-N(2), the strongly IR active degenerate antisymmetric stretch vibration (v4)) of c-C(3)H(3)(+) is split into two components upon complexation with N(2): v4)(a(1)) = 3094 cm(-1) and v4)(b(2)) = 3129 cm(-1). These values bracket the yet unknown v4) frequency of free c-C(3)H(3)(+) in the gas phase, which is estimated as 3125 +/- 4 cm(-1) by comparison with theoretical data. Analysis of the nuclear spin statistical weights and A rotational constants of H(2)CCCH(+)-N(2) and c-C(3)H(3)(+)-N(2) provide for the first time high-resolution spectroscopic evidence that H(2)CCCH(+) and c-C(3)H(3)(+) are planar ions with C(2v) and D(3h) symmetry, respectively. Ab initio calculations at the MP2(full)/6-311G(2df,2pd) level confirm the given assignments and predict intermolecular separations of R(e) = 2.1772 and 2.0916 A and binding energies of D(e) = 1227 and 1373 cm(-1) for the H-bound c-C(3)H(3)(+)-N(2) and H(2)CCCH(+)-N(2) dimers, respectively.  相似文献   

16.
The crossed molecular beam reactions of ground state methylidyne, CH(X(2)Π), with D2-acetylene, C(2)D(2)(X(1)Σ(g)(+)), and of D1-methylidyne, CD(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), were conducted under single collision conditions at a collision energy of 17 kJ mol(-1). Four competing reaction channels were identified in each system following atomic 'hydrogen' (H/D) and molecular 'hydrogen' (H(2)/D(2)/HD) losses. The reaction dynamics were found to be indirect via complex formation and were initiated by two barrierless-addition pathways of methylidyne/D1-methylidyne to one and to both carbon atoms of the D2-acetylene/acetylene reactant yielding HCCDCD/DCCHCH and c-C(3)D(2)H/c-C(3)H(2)D collision complexes, respectively. The latter decomposed via atomic hydrogen/deuterium ejection to form the thermodynamically most stable cyclopropenylidene species (c-C(3)H(2), c-C(3)D(2), c-C(3)DH). On the other hand, the HCCDCD/DCCHCH adducts underwent hydrogen/deuterium shifts to form the propargyl radicals (HDCCCD, D(2)CCCH; HDCCCH, H(2)CCCD) followed by molecular 'hydrogen' losses within the rotational plane of the decomposing complex yielding l-C(3)H/l-C(3)D. Quantitatively, our crossed beam studies suggest a dominating atomic compared to molecular 'hydrogen' loss with fractions of 81 ± 23% vs. 19 ± 10% for the CD/C(2)H(2) and 87 ± 30% vs. 13 ± 4% for the CH/C(2)D(2) systems. The role of these reactions in the formation of interstellar isomers of C(3)H(2) and C(3)H is also discussed.  相似文献   

17.
Reduction of imines by [2,5-Ph2-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)2H (1) produces kinetically stable ruthenium amine complexes. Reduction of an imine possessing an intramolecular amine was studied to distinguish between inner sphere and outer sphere mechanisms. 1,4-Bn(15)NH(c-C(6)H(10))=NBn (12) was reduced by 1 in toluene-d8 to give 85% of [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)RuNHBn(c-C(6)H(10))(15)NHBn (16-RuN,15N), resulting from coordination of the newly formed amine to the ruthenium center, and 15% of trapping product [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)Ru(15)NHBn(c-C(6)H(10))NHBn (16-Ru(15)N,N), resulting from coordination of the intramolecular trapping amine. These results provide support for an outer sphere transfer of hydrogen to the imine to generate a coordinatively unsaturated intermediate, which can be trapped by the intramolecular amine. An opposing mechanism, requiring coordination of the imine nitrogen to ruthenium prior to hydrogen transfer, cannot readily explain the observation of the trapping product 16-Ru(15)N,N.  相似文献   

18.
A laser-induced fluorescence spectrum was observed in the 500-560 nm region when a mixture of 1,4-cyclohexadiene and oxalyl chloride was photolyzed at 193 nm. The observed excitation spectrum was assigned to the A (2)A(2)<--X (2)B(1) transition of the cyclohexadienyl radical c-C6H7, produced by abstraction of a hydrogen atom from 1,4-cyclohexadiene by Cl atoms. The origin of the A<--X transition of c-C(6)H(7) was at 18 207 cm(-1). From measurements of the dispersed fluorescence spectra and ab initio calculations, the frequencies of several vibrational modes in both the ground and excited states of c-C(6)H(7) were determined: nu(5)(C-H in-plane bend)=1571, nu(8)(C-H in-plane bend)=1174, nu(10)(C-C-C in-plane bend)=981, nu(12)(C-C-C in-plane bend)=559, nu(16)(C-C-C out-of-plane bend)=375, and nu(33)(C-C-C in-plane bend)=600 cm(-1) for the ground state and nu(8)=1118, nu(10)=967, nu(12)=502, nu(16)=172, and nu(33)=536 cm(-1) for the excited states.  相似文献   

19.
The adiabatic electron affinities (AEAs), vertical electron affinities (VEAs), and vertical detachment energies (VDEs) of cyclic perfluoroalkanes, c-C(n)F(2n) (n = 3-7), and their monotrifluoromethyl derivatives were computed using various pure and hybrid density functionals with DZP++ (polarization and diffuse function augmented double-zeta) basis sets. The theoretical AEA of c-C(4)F(8) at KMLYP/DZP++ is 0.70 eV, which exhibits satisfactory agreement with the 0.63 +/- 0.05 eV experimental value. The nonzero-point-corrected AEA of c-C(4)F(8) is predicted to be 0.41 eV at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of theory, which shows a slight deviation of 0.11 eV from the KMLYP estimated value of 0.52 eV for the same. With the zero-point correction from the MP2/6-311G(d) [Gallup, G. A. Chem. Phys. Lett. 2004, 399, 206] level of theory combined with the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ result, the most reliable estimate of AEA of c-C(4)F(8) is 0.60 eV. c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-) are unusual in preferring planar to near planar ring structures. The ZPE-corrected AEAs of c-C(n)F(2n) increase from n = 3 (0.24 eV) to n = 5 (0.77 eV), but then dramatically fall off to 0.40 eV for both n = 6 and n = 7. All of the other functionals predict the same trend. This is due to a change in the structural preference: C(s)() c-C(6)F(12)(-) and C(1) c-C(7)F(14)(-) are predicted to favor nonplanar rings, each with an exceptionally long C-F bond. (There also is a second, higher energy D3d minimum for C(6)F(12)(-).) The SOMOs as well as the spin density plots of the c-PFA radical anions reveal that the "extra" electron is largely localized on the unique F atoms in the larger n = 6 and n = 7 rings but is delocalized in the multiatom SOMOs of the three- to five-membered ring radical anions. The computed AEAs are much larger than the corresponding VEAs; the latter are not consistent with different functionals. The AEAs are substantially larger when a c-C(n)()F(2)(n)() fluorine is replaced by a -CF(3) group. This behavior is general; PFAs with tertiary C-F bonds have large AEAs. The VDEs for all the anions are substantial, ranging from 1.89 to 3.64 eV at the KMLYP/DZP++ level.  相似文献   

20.
The complex cis,trans,cis-[PtCl(2)(OAc)(2)NH(3)(c-C(6)H(11)NH(2))] (JM-216) is currently undergoing clinical evaluation as an antitumor agent. In support of characterization and analysis of this complex a study of its isomers and other complexes [PtCl(m)()(OAc)((4)(-)(m)()())NH(3)(c-C(6)H(11)NH(2))] (m = 0-4) has been undertaken. The complexes have been obtained by a variety of synthetic routes which now extend the scope for the preparation of platinum(IV) antitumor complexes. As platinum(IV) complexes are very stable to substitution in the absence of catalysis, use has been made of both light and base catalysis to promote substitution. Oxidative addition to platinum(II) using hypervalent iodine reagents has also been used. The stereochemistry of the complexes has been confirmed by spectroscopic studies, primarily NMR including natural abundance (15)N NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号