首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
基于变色多酸P2Mo18O626-与绿光Tb3+之间的功能互补及分子间能量转移的原理, 在维生素C(VC)的还原下, P2Mo18O626-@Tb3+溶液由浅黄色变为蓝色, 发生荧光猝灭; 相反, 在H2O2氧化下, 溶液的蓝色褪去, 荧光得以恢复, P2Mo18O626-@Tb3+溶液呈现出可逆的化学响应变色及荧光开关性质. 利用紫外-可见(UV-Vis)及荧光(PL)光谱法对VC浓度进行定量检测, 分别以800 nm处的吸光度和 547 nm处荧光强度的对数值对VC浓度作图, 获得光谱法对VC检测的线性方程, 检出限分别为3.40×10-3和0.21 μmol/L; 利用UV-Vis及PL动力学方法对VC和H2O2检测的响应速度进行了考察, 响应时间分别为52和320 s; 通过UV-Vis光谱及动力学方法考察了VC检测的选择性及可重复使用性.  相似文献   

2.
将1,4-二硫苏糖醇(DTT)自组装在100 nm厚的平整金膜表面, 形成DTT膜修饰金平板电极(GPE), 构建了一种新颖的简单、 快速测定汞离子的选择性电极分析方法. 通过电化学交流阻抗和循环伏安法探讨了该电极的响应原理, 即固定在Au表面的DTT通过另一端的巯基与汞离子发生强配位作用而吸附结合带正电荷的汞离子, 引起电极表面膜电位的变化, 从而选择性地识别汞离子. 实验结果表明, 该电极在pH=6.0的Tris-HCl缓冲溶液中对汞离子有良好的电位响应性能, 其线性范围为1.0×10-8~1.0×10-3 mol/L, 能斯特响应斜率为(29.62±0.2) mV/-pc(25 ℃), 检出限为5.1×10-9 mol/L. 该汞离子检测电极的响应时间仅为20 s, 且有较好的重现性和稳定性. 通过测定各种离子的选择性系数, 发现Cu2+, Fe2+, Na+, K+, Mg2+, Ba2+, Ca2+, Zn2+, Sn2+, Pb2+, Ag+, Al3+, Fe3+, Ni2+, NO2-, IO3-, BrO3-和ClO3-等离子不干扰该电极对汞离子的检测. 此外, 将该电极用于实际水样中微量汞离子含量的测定, 结果与双硫腙分光光度方法一致, 且回收率为98.20%~101.75%.  相似文献   

3.
以正十二烷作稀释剂, 研究了二(2-乙基己基)二硫代次膦酸(D2EHDTPA)对HNO3溶液中Am3+和Eu3+的萃取行为. 考察了酸度、 萃取剂及NO3-浓度和皂化度对萃取的影响. 在考察的pH范围(2.5~4.5)内, D2EHDTPA萃取Am3+和Eu3+的分配比(D)随pH值增大而增加; pH=3.65时, 分离因子(SFAm/Eu)值达到最大(4000). 随D2EHDTPA浓度的增加, DAmDEu值均增加. 斜率分析表明, D2EHDTPA萃取Am3+和Eu3+主要形成3:1和2:1型的萃合物. NO3-未直接参与D2EHDTPA对Am3+和Eu3+的萃取反应. D2EHDTPA经NaOH皂化后, 萃取能力显著增强, SFAm/Eu值提高到104量级, 萃取容量约为理论值的60%. 此外, 使用高分辨质谱、 红外光谱和等温微量热滴定方法研究了D2EHDTPA与Eu3+的配位化学行为, 得到了金属离子与配体的组成比、 络合物稳定常数以及配位热力学参数ΔH, ΔS和ΔG值.  相似文献   

4.
以含有—NH2和C═N的偕胺肟化聚丙烯腈(AOPAN)纳米纤维膜为载体, 通过水热法在AOPAN纳米纤维膜表面原位生长片状Mg(OH)2纳米粒子, 得到具有多层次结构的有机-无机电纺复合纳米纤维膜[AOPAN@Mg(OH)2], 并研究了AOPAN@Mg(OH)2的除铬性能. 研究结果表明, 当水热温度为40 ℃, 水热时间为7 h时, AOPAN纳米纤维膜表面形成了明显的多层次结构的Mg(OH)2纳米晶体. 当溶液pH=2时, AOPAN@Mg(OH)2复合纳米纤维膜对Cr(Ⅵ)的吸附符合Langmuir模型, 且满足二级动力学方程, 5 h后最大吸附量达到123.5 mg/g. AOPAN@Mg(OH)2复合纳米纤维膜中含有—NH2基团和Mg(OH)2纳米粒子, 在酸性条件下可以质子化为带正电的—NH3+和Mg(OH)2H+, 通过静电吸附更易与HCrO4-结合. 此类复合纳米纤维膜材料在水体中易取出, 并且在稀NaOH溶液中可以解吸附, 循环使用4次去除率仍可以保持在50%以上.  相似文献   

5.
采用共沉淀法, 固定Mg2+/(Al3++Ti4+)摩尔比为3.00, 改变Ti4+/(Al3++Ti4+)摩尔比(RTi, 0~0.40), 合成了5个Mg-Al-Ti-CO3层状双氢氧化物(LDHs)样品, 并进行了表征. 采用电势滴定、 盐滴定和电势质量滴定法, 测定了其结构电荷密度(σst)、 零净电荷点(pHPZNC)和零净质子电荷点(pHPZNPC)等, 并基于普适1-pK和2-pK模型得出其表面羟基酸碱反应特征平衡常数(pK, pKa1int和pKa2int), 考察了RTi对LDHs晶体结构和界面电化学性质的影响. 研究结果表明, 随着RTi增大,晶胞常数和层间距均增大, 可归因于Ti4+离子间强静电排斥作用. pHPZNC和pHPZNPC以及pK, pKa1int和pKa2int均随RTi的增大而有增大的趋势, 表明表面羟基去质子化趋势降低. 各LDHs样品的pHPZNPC值低于其pHPZNC值, 且随电解质(NaNO3)浓度的增大而升高, 可归因于结构正电荷效应.  相似文献   

6.
尹正日 《应用化学》2018,35(12):1514-1520
为了方便地检测环境样品中的硫化氢,利用香豆素酰肼肟配体构建了一个基于其铜配合物的可再生高选择性的硫化氢荧光探针(1-Cu2+)。 顺磁性Cu2+的荧光猝灭作用使探针的荧光很弱。 Na2S溶液的加入可显著增强其荧光,其它常见阴离子(F-,Cl-,Br-,I-,CO32-,HPO42-,H2PO4-,NO2-,NO3-,SO42-,CH3COO-,N3-,S2O32-,CN-)对配合物探针的荧光影响很小,共存时也不会干扰探针对硫化氢的增强响应。 Cu2+的加入能够再生探针(1-Cu2+),通过依次加入Cu2+和S2- ,可重复地检测S2-。 该探针响应时间快(~5 s),在0.5~5.0 μmol/L的范围内对H2S响应呈线性,检测限低至37 nmol/L。  相似文献   

7.
郭红霞  崔继方  刘利 《应用化学》2020,37(3):256-263
利用太阳能和半导体光催化剂,将CO2光催化还原转变成碳氢燃料,是缓解温室效应、全球变暖、环境污染和能源危机等一系列问题的理想途径。 本文对氧空位增强的光催化还原CO2反应机理进行归纳,并分别针对还原产物为C1和C2组分的光催化体系进行概括总结。 作为CO2光催化还原过程的第一步,CO2捕获光催化剂导带上的电子生成CO2·-是反应的速控步骤。 氧空位的引入及其带来的金属配位不饱和点,利于CO2捕获电子生成CO2·-,进而促进CO2光催化还原过程。 最后,提出当前氧空位增强光催化还原CO2过程仍然存在的问题,且对发展前景进行展望。  相似文献   

8.
研究了腐植酸(HA)存在下冰相体系中γ-六氯环己烷(γ-HCH)的光转化规律. 结果表明, HA浓度对γ-HCH的光转化率呈现低浓度促进而高浓度抑制的现象; 盐离子浓度、 NO2-及NO3-γ-HCH的光转化率均有促进作用; 低浓度Fe3+γ-HCH的光转化率有促进作用, 当Fe3+的浓度增大到50 μmol/L时, 呈现抑制效应; γ-HCH在不同pH值条件下光转化速率的大小顺序为碱性>中性>酸性. 冰相中HA通过产生单线态氧(1O2)、 羟基自由基(·OH)及三重激发态(HA*)加速γ-HCH的光转化. HA存在下γ-HCH的光转化产物主要是五氯环己烯、 邻二氯苯和对二氯苯、 一氯苯, 光转化过程中1O2通过消耗中间产物间接加速了γ-HCH的光转化过程.  相似文献   

9.
10.
采用UωB97X-D/6-311+G**方法, 研究了气相、 甲苯和水中OH自由基(·OH)引发CH3SSCH3自由基阳离子(CH3SSCH3?+, DMDS?+)裂解的反应机理, 并讨论了溶剂效应对反应的影响. 结果表明, ·OH和DMDS·+首先形成自由基耦合产物CH3S(OH)SCH3+(R1)和氢提取产物复合物[CH2=SSCH3+H2O]+(R2); 随后R1裂解直接发生 S—S键断裂协同质子转移, 而R2裂解依次发生构象变化、 C=S键亲碳加成和S—S键断裂协同质子转移. 去质子化的裂解产物为CH3SOH, CH2=S和HSCH2OH. 甲苯略微降低了裂解反应速控步骤的自由能垒. 水溶剂有利于R1裂解, 但不利于R2裂解, 尤其是单个水分子参与反应. 在气相、 甲苯和水中, 以·OH和DMDS·+为初始反应物, 虽然速控步骤的自由能垒为167.6~202.8 kJ/mol, 但裂解反应均是放热反应(?154.3~?31.4 kJ/mol).  相似文献   

11.
采用共沉淀法制备了一系列Mn掺杂的CuFeZnK催化剂, 研究了Mn助剂对催化剂的结构及催化CO2加氢制低碳醇合成性能的影响. 结果表明, 引入适量的Mn(质量分数2.1%)能有效提高低碳醇的选择性和时空收 率(STY), 在320 ℃和5 MPa的条件下, CO2的转化率为29.4%, 低碳醇选择性(CO-free)达到23.2%, 时空收率达到41.1 mg·gcat-1·h?1, 且低碳醇在总醇中的比例达到96.9%. 利用X射线衍射(XRD)、 N2吸附-脱附实验、 X射线光电子能谱(XPS)、 透射电子显微镜(TEM)和氢气程序升温还原(H2-TPR)等手段对制得催化剂进行表征, 结果表明, 适量Mn可以起到结构助剂的作用, 减小Cu颗粒尺寸的同时促进Fe5C2相的形成, 从而构建丰富的Cu-Fe5C2活性界面, 用于低碳醇合成. 而过量的Mn反而会堵塞催化剂的孔道, 覆盖活性位点, 降低了催化性能.  相似文献   

12.
以叠氮基为识别基团,4.4'-联苯二甲酸为初始原料,合成了一种可用于H_2S检测的联苯类比率型荧光探针2-叠氮基-4,4'-联苯二甲酸乙酯(WN),并通过~1H NMR、~(13)C NMR以及MS等技术手段对其结构进行了表征。以检测水溶液中硫化氢为目的,系统地研究了其荧光特性。研究结果表明,WN对硫化氢具有高选择性和灵敏度,且对生物硫醇(Cys,Gsh)、活性氧化物(H_2O_2,ClO~-)、各种阴阳离子(H_2PO_4~-,SO_4~(2-),Cl~-,HCO_3~-,CO_3~(2-),Mg~(2+),Zn~(2+),K~+,Ca~(2+),Na~+)有很强的抗干扰能力,在较宽的pH值范围内,仍然表现出良好的荧光性能,在1.1~350μmol/L范围内,NaHS的浓度与荧光强度呈现良好的线性关系,相关系数R~2=0.9943,检出限度为1.07×10~(-6)mol/L。通过对3种不同水样的测试,表明探针WN在水体中H_2S的检测方面具有一定的应用意义。  相似文献   

13.
通过在尿素前驱体中添加单宁酸, 原位缩聚形成碳自掺杂石墨相氮化碳(g-C3N4). 利用X射线光电子能谱(XPS)、 场发射扫描电子显微镜(FESEM)、 X射线衍射(XRD)仪和同步热分析(TG-DSC)等方法对碳自掺杂 g-C3N4的形貌、 物相结构和能带价态组分进行表征分析, 结合紫外-可见吸收光谱(UV-Vis)和原位光微量热-荧光光谱联用仪获得碳自掺杂g-C3N4降解罗丹明B的原位热/动力学信息和三维荧光光谱信息, 探讨了光催化降解罗丹明B的微观机制. 结果表明, 单宁酸浓度≤10 mg/mL时, 碳会取代七嗪单元结构的氮原子形成g-C3N4骨架碳自掺杂; 单宁酸浓度≥ 20 mg/mL时, 碳以无定形形式沉积负载在g-C3N4表面上形成无定形碳自掺杂. 骨架碳自掺杂g-C3N4形成的π电子有效缩短了禁带宽度, 减小了光生电子-空穴复合几率, 比无定形C掺杂g-C3N4显示出更优异的光催化性能, 催化主要活性物种为h+和·O2-. 碳自掺杂g-C3N4光催化降解过程可分为光响应吸热、 降解污染物放热平衡过程和稳定放热3个过程. 其中骨架碳自掺杂g-C3N4(C/N摩尔比为0.844)在光照1000 s内, 三维荧光光谱检测的RhB降解率锐减, 光照1000 s后, 其RhB降解率为87.6%, 分别是原始g-C3N4和无定形碳自掺杂g-C3N4的3.13倍和1.95倍. 光照1000 s后, 光微量热计显示以矿化和降解非荧光发色中间产物为主, 并保持以热变速率为(0.9799±0.5356) μJ/s稳定放热, 为拟零级反应过程, 是光催化反应的决速步骤.  相似文献   

14.
考察了游离碳酸酐酶吸收CO2水合体系反应条件, 并通过同轴共纺静电纺丝技术制备出中空结构纤维, 实现了碳酸酐酶在中空纤维中的原位包埋, 提高了酶的稳定性并便于回收和重复利用. 实验结果表明, 固定化碳酸酐酶的热稳定性显著增强, 受Cu2+和Fe3+等金属离子的抑制作用大幅度降低. 连续使用11次后所生成的CaCO3沉淀量仍能达到首次使用的81.9%. 固定化酶体系生成的CaCO3沉淀包括方解石型和球文石型2种晶形, 而无酶和加入游离碳酸酐酶的反应体系则主要生成方解石型CaCO3沉淀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号