首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient methodology is reported for the regioselective C-6 arylation of protected uracil via the palladium catalyzed CH functionalization of 1-(4-methoxybenzyl)-3-methylpyrimidine-2,4(1H,3H)-dione with (hetero)aryl halides and boronic acids. Utilization of the Pd(OAc)2/Xantphos catalytic system with a stoichiometric amount of CuI and DBU as the base was vital for the success of this protocol. The methodology is facile and compatible with aryl bromides, iodides and boronic acids and hence affords broad substrate scope and diversity.  相似文献   

2.
Several palladacycle and platinacycle complexes have been prepared from easily available or naturally occurring indole derivatives, such as gramine and related compounds. Dimeric complexes were obtained with Pd(OAc)2, while Pt(DMSO)2Cl2 mainly afforded monomeric structures. A notable feature of these reactions was the formation of new M-C bonds between Pd or Pt and C-2 and C-3 of the indole ring. With ligands like 2-(2′-pyridyl)-1H-indoles, N-N metallacycles were generated instead: in fact new C-M bonds with the C-3 position could only form if N-substituted indoles were used. The reactivity of Pd dimeric complexes with PPh3, sym-collidine and DMAP was explored to obtain monomeric complexes. Three such compounds were prepared, one of which was characterized by X-ray diffraction. Metathetical reactions were carried out to effect a ligand exchange replacing OAc with halide ions, with the aim to synthesize μ-Cl and μ-Br bridged structures. Turning to the synthesis of hetaryl complexes, functionalization of the C-2 position on the indole ring was achieved. These complexes were prepared by substitution reactions starting from gramine and/or its alkylammonium salts.  相似文献   

3.
Lithium-silylindolide as Precursor of 1,2-, 1,3-Bis(silyl)indoles and Bis(indole-1,3-yl)silane Lithium-indolide reacts with difluorosilanes (F2SiR2: R = CHMe2 ( 1 ); CMe3 ( 2 )) in a molar ratio 2 : 1 with formation of bis(indole-1-yl)silanes. The 1-(di-tert-butylfluorosilyl)-3-(fluorodiisopropylsilyl)indole ( 3 ) is obtained in the reaction 1-(di-tert-butylfluorosilyl)-3-lithium-indolide and F2Si(CHMe2)2. In a molar ratio 2 : 1 the bis(1-di-tert-butylfluorosilyl-indole-3-yl)diisopropylsilane 4 is formed. As a byproduct bis(1-di-tert-butylfluorosilyl-indole-3-yl)dimethylmethane ( 5 ) is isolated. A cleavage of THF and the formation of (indole-1-yl)diisopropylvinyloxysilan ( 6 ) occurs in the reaction of 1-diisopropylfluorosilylindole with t-BuLi in THF. 1-(di-tert-butylfluorosilyl)indole reacts with n-BuLi/TMEDA accompanied by an 1,2-anionic silyl group migration to give the 2-(di-tert-butylfluorosilyl)-1-lithiumindolide 7 . Hydrolysis of 7 gives the 2-(di-tert-butylfluorosilyl)indole ( 8 ). In the reaction of 7 with F2Si(CHMe2)2 the 1-(diisopropylfluorosilyl)-2-(di-tert-butylfluorosilyl)indole 9 is obtained. 1-n-Butyl-diisopropylsilylindole ( 10 ) is the product of the reaction of F2Si(CHMe2)2, n-BuLi/TMEDA and indole at –70 °C. Lithium-indolide reacts with 3 to give the 1-(di-tert-butylfluorosilyl)indole-3-yl)(indole-1-yl)-diisopropylsilane ( 11 ), the first example of this class of substances. In the reaction of 1 , F2SiMe2, and t-BuLi in THF the 1-(diisopropyl(indole-1-yl)silyl)-3-dimethyl-(3.3-dimethylbutylsilyl)indole 12 is isolated. The crystal structures of 2 , 5 and 9 are discussed.  相似文献   

4.
《Tetrahedron letters》2019,60(21):1437-1440
CH bond functionalization for CN and CC bond formations via cross-dehydrogenative coupling (CDC) of N-allylbenzamides with indole as amine source has been developed under a copper-catalyzed condition. To the best of our knowledge, these are the first examples in which different classes of N-containing compounds were directly prepared from the readily available N-allylbenzamides using an inexpensive catalyst-oxidant (CuSO4/TBHP) system. Further, it was applied for the synthesis of α-substituted N-allylbenzamides by using Grignard reagent as nucleophiles.  相似文献   

5.
《中国化学快报》2023,34(1):107477
Transition-metal-catalyzed decarboxylative and CH functionalization strategy for the construction of Csp2-Csp2, Csp2-Csp, and Csp2-Csp3 bonds has been extensively studied. However, research surveys of this synthetic strategy for the Csp3-Csp3 bond forming reactions are surprisingly scarce. Herein, we present an efficient approach for the rapid formation of Csp3–Csp3 bond through copper-catalyzed decarboxylative Csp3H functionalization. The present method should provide a useful access to C3-substituted indole scaffolds with possible biological activities. Mechanistic experiments and DFT calculations supported a dual-Cu(II)-catalytic cycle involving rate-determining decarboxylation in an outer-sphere radical pathway and spin-crossover-promoted CC bond formation. This strategy offers a promising synthesis method for the construction of Csp3–Csp3 bond in the field of synthetic and pharmaceutical chemistry and extends the number of still limited copper-catalyzed decarboxylative Csp3–Csp3 bond forming reaction.  相似文献   

6.
The direct functionalization of methane into platform chemicals is arguably one of the holy grails in chemistry. The actual active sites for methane activation are intensively debated. By correlating a wide variety of characterization results with catalytic performance data we have been able to identify mononuclear Fe species as the active site in the Fe/ZSM-5 zeolites for the mild oxidation of methane with H2O2 at 50 °C. The 0.1% Fe/ZSM-5 catalyst with dominant mononuclear Fe species possess an excellent turnover rate (TOR) of 66 molMeOH molFe−1 h−1, approximately 4 times higher compared to the state-of-the-art dimer-containing Fe/ZSM-5 catalysts. Based on a series of advanced in situ spectroscopic studies and 1H- and 13C- nuclear magnetic resonance (NMR), we found that methane activation initially proceeds on the Fe site of mononuclear Fe species. With the aid of adjacent Brønsted acid sites (BAS), methane can be first oxidized to CH3OOH and CH3OH, and then subsequently converted into HOCH2OOH and consecutively into HCOOH. These findings will facilitate the search towards new metal-zeolite combinations for the activation of C–H bonds in various hydrocarbons, for light alkanes and beyond.

The monomeric Fe species in Fe/ZSM-5 have been identified as the intrinsic active sites for the low-temperature methane oxidation.  相似文献   

7.
Efficient control of regioselectivity is a key concern in transition-metal-catalyzed direct C–H functionalization reactions. Various strategies for regiocontrol have been established by tuning the selectivity of the C–H activation step as a common mode. Herein, we present our study on an alternative mode of regiocontrol, in which the selectivity of the C–H activation step is no longer a key concern. We found that, in a reaction where the C–H activation step exhibits a different regio-preference from the subsequent functionalization step, a ligand-enabled switch of the regioselectivity-determining step could provide efficient regiocontrol. This mode has been exemplified by the Pd(ii)-catalyzed aerobic oxidative Heck reaction of indoles, in which a ligand-controlled C3-/C2-selectivity was achieved for the first time by the development of sulfoxide-2-hydroxypyridine (SOHP) ligands.

Ligand-enabled switch of the regioselectivity-determining step allowed for efficient regiocontrol in the aerobic oxidative Heck reaction of indole.  相似文献   

8.
《中国化学快报》2023,34(6):108001
Due to its difficulty and complexity, the cleavage and subsequent functionalization of the C(sp3)-C(sp3) single bond has received less attention than the CC bond formation reactions that have been extensively studied. Herein, by utilizing Cu/g-C3N4 nanometric semiconductor as a recyclable photocatalyst, an aerobic oxidative CC bond cleavage of aldehydes was developed with the promotion of amines under visible light irradiation. Based on the reaction, phenylacetaldehyde was selected as a highly efficient formylation reagent for amines. Under blue light irradiation, good to excellent yields of formamides were achieved for various amines in 1 atm oxygen atmosphere at room temperature. This methodology offers a practical, neutral and gentle alternative to the preparation of formamides.  相似文献   

9.
10.
N-Tosylhydrazones have proven to be versatile synthons over the past several decades. However, to our knowledge, the construction of isoxazolines based on N-tosylhydrazones has not been examined. Herein, we report the first demonstrations of [2 + 2 + 1] cycloaddition reactions that allow the facile synthesis of isoxazolines, employing N-tosylhydrazones, tert-butyl nitrite (TBN) and alkenes as reactants. This process represents a new type of cycloaddition reaction with a distinct mechanism that does not involve the participation of nitrile oxides. This approach is both general and practical and exhibits a wide substrate scope, nearly universal functional group compatibility, tolerance of moisture and air, the potential for functionalization of complex bioactive molecules and is readily scaled up. Both control experiments and theoretical calculations indicate that this transformation proceeds via the in situ generation of a nitronate from the coupling of N-tosylhydrazone and TBN, followed by cycloaddition with an alkene and subsequent elimination of a tert-butyloxy group to give the desired isoxazoline.

A novel [2 + 2 + 1] cycloaddition of N-tosylhydrazones, tert-butyl nitrite and alkenes was successfully established, which allowed facile construction of a wide range of isoxazolines.  相似文献   

11.
Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. ?1.07 to ?2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.  相似文献   

12.
《Tetrahedron letters》2019,60(29):1899-1903
Propargyl α-aryl-α-diazoacetate a new class of reagent is developed for the effective CH bond functionalization of 1,3-diketones at room temperature. The combination of scandium triflate and propargyl α-aryl-α-diazoacetate proved to be efficient catalyst-reagent system for the controlled CH bond functionalization to afford 1,3-dicarbonyl alkylation. The protocol uses inexpensive Sc(OTf)3 (5 mol%) and the reaction did not require the use of expensive catalysts or ligands and worked efficiently at room temperature. The practicality of the protocol has been demonstrated by the gram scale synthesis.  相似文献   

13.
《中国化学快报》2023,34(3):107609
Palladium-catalyzed non-directed CH functionalization provides an efficient approach for direct functionalization of arenes, but it usually suffers from poor site selectivity, limiting its wide application. Herein, it is reported for the first time that the carboxylic acid ligand of 3,5-dimethyladamantane-1-carboxylic acid (1-DMAdCO2H) can affect the site selectivity during the CH activation step in palladium-catalyzed non-directed CH functionalization, leading to highly para-selective CH olefination of TIPS-protected phenols. This transformation displayed good generality in realizing various other para-selective CH functionalization reactions such as halogenation, and allylation reactions. A wide variety of phenol derivatives including bioactive molecules of triclosan, thymol, and propofol, were compatible substrates, leading to the corresponding para-selective products in moderate to good yields. A preliminary mechanism study revealed that the spatial repulsion factor between carboxylic acid ligand and bulky protecting group resulted in the selective CH activation at the less sterically hindered para-position. This new model non-directed para-selective CH functionalization can provide a straightforward route for remote site-selective CH activations.  相似文献   

14.
<正>Organic molecules containing gem–difluoromethylene unit are one of the most important classes of compounds that have various valuable applications ranging from drug discovery to material science [1]. Not surprisingly, numerous strategies have been developed towards the synthesis of these target organofluorine compounds. Within this research area, direct C–F bond cleavage of cheap and readily accessible polyfluorinated compounds represents one of the most potentially powerful methods to ...  相似文献   

15.
K2S2O8 was unprecedentedly used instead of tert-butyl hydroperoxide (TBHP) in Brønsted acid-assisted catalytic strategy for ketonic radical generation, and the first Brønsted acid-catalyzed radical CH functionalization of acetone across unactivated alkenes is presented. In the presence of TsOH and K2S2O8, N-allyl anilines underwent addition/cyclization cascade with acetone to afford 3-(3-oxobutyl)indolines with exo-selectivity and broad substrate scope at a relatively low temperature.  相似文献   

16.
The deprotonation of propargylic C–H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C–H bonds under mild, catalytic conditions. This technology was applied to the direct conversion of C–H bonds to C–C bonds for the synthesis of several functionalized scaffolds through a one-pot cross dehydrogenative coupling reaction with tetrahydroisoquinoline and related privileged heterocyclic scaffolds. A series of NMR studies and deuterium-labelling experiments indicated that the deprotonation of the propargylic C–H bond was the rate-determining step when a Cp*Fe(CO)2-based catalyst system was employed.

[Cp*Fe(CO)2]+ facilitates the α-deprotonation of unsaturated C–C bond for propargylic and allylic C–H functionalization. Mechanistic studies reveal insights into the superior performance of the electron-rich and hindered ligand on iron.  相似文献   

17.
A trigonal-bipyramidal covalent organic cage compound serves as an efficient host to form stable 1 : 1-complexes with C60 and C70. Fullerene encapsulation has been comprehensively studied by NMR and UV/Vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Exohedral functionalization of encapsulated C60via threefold Prato reaction revealed high selectivity for the symmetry-matched all-trans-3 addition pattern.

The taming of the Prato reaction: a covalent organic cage compound serves as a supramolecular template for the regioselective functionalization of C60.  相似文献   

18.
《Chemical physics》1986,105(3):397-416
We report the results of a comprehensive investigation of the two-color threshold photoionization of jet-cooled indole clusters. Using two-color photoionization spectroscopy, we have probed both the neutral excited levels and the ground ionic states of indole clusters containing non-polar (Ar, CH4, CF4, C6H6) and polar (H2O, MeOH, EtOH, NH3, N(CH3)3) solvent species. These studies have allowed the determination of accurate cluster ionization energies (IEs) as well as the assignment of electronic absorption features to clusters of known composition. The determination of the cluster IE, which is typically lower than that of bare indole, has allowed us to investigate the importance of charge-induced dipole and charge-dipole attractive forces in the binding of the ion-neutral clusters. In addition, we have found that the shape of the photoionization efficiency (PIE) spectra gives valuable information regarding the relative shape and/or position of the potential energy surfaces of the neutral excited and ground ionic states of the clusters. We have also identified two distinct conformational isomers of the indole-(H2O)1 hydrogen bonded cluster using the techniques of electronic spectroscopy, two-color threshold ionization spectroscopy and mass analysis.  相似文献   

19.
The fused heterocycle 4-(phenylsulfonyl)-4H-furo[3,4-b]indole, which is an indole-2,3-quinodimethane synthetic analogue, is prepared in five steps from indole in 46% yield. A similar sequence is used to synthesize C-3 derivatives (3-methyl, 3-phenyl, and 3-heptyl). Thus, indole-3-carbaldehyde (1) is protected as the N-phenylsulfonyl derivative 2 and converted to the ethylene acetal 6. Lithiation at C-2 followed by treatment with an aldehyde affords the expected hydroxy acetals 7 and 8. Exposure to acid effects cyclization to the furoindoles 5 and 9. Furthermore, C-1 lithiation of furo[3,4-b]indole 9c followed by treatment with methyl iodide affords disubstituted furo[3,4-b]indole 10.  相似文献   

20.
Totally different functionalization and construction as two fundamental synthetic protocols have long been applied to furnish azaarene variants. Here, a novel radical-based functionalization-oriented construction strategy by exploiting the electronic properties of azaarenes and the high reactivity of radicals is developed. Under a photoredox catalysis platform, the robust ability of such an artful combination of functionalization with construction is disclosed in the synthesis of valuable 3-azaarene-substituted densely functionalized pyrroles. In addition to the ability to use the readily accessible feedstocks, the high synthetic efficiency and the good functional group tolerance, the substrate scope is broad (81 examples) resulting from the capability to flexibly replace the types of azaarenes and other substituents. Control experiments and density functional theory (DFT) calculations elucidate the plausible mechanism involving the reaction pathways and the important role of NaH2PO4 as an additive in the reaction.

A radical-based functionalization-oriented construction as a new synthetic strategy of azaarene variants is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号