首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Delannoy numbers d(n,k) count the number of lattice paths from (0,0) to (n?k,k) using steps (1,0),(0,1) and (1,1). We show that the zeros of all Delannoy polynomials dn(x)=k=0nd(n,k)xk are in the open interval (?3?22,?3+22) and are dense in the corresponding closed interval. We also show that the Delannoy numbers d(n,k) are asymptotically normal (by central and local limit theorems).  相似文献   

2.
3.
《Discrete Mathematics》2022,345(7):112886
In this article we investigate a problem in graph theory, which has an equivalent reformulation in extremal set theory similar to the problems researched in “A general 2-part Erd?s-Ko-Rado theorem” by Gyula O.H. Katona, who proposed our problem as well. In the graph theoretic form we examine the clique number of the Xor product of two isomorphic KG(N,k) Kneser graphs. Denote this number with f(k,N). We give lower and upper bounds on f(k,N), and we solve the problem up to a constant deviation depending only on k, and find the exact value for f(2,N) if N is large enough. Also we compute that f(k,k2) is asymptotically equivalent to k2.  相似文献   

4.
5.
Motivated by Ramsey-type questions, we consider edge-colorings of complete graphs and complete bipartite graphs without rainbow path. Given two graphs G and H, the k-colored Gallai–Ramsey number grk(G:H) is defined to be the minimum integer n such that n2k and for every Nn, every rainbow G-free coloring (using all k colors) of the complete graph KN contains a monochromatic copy of H. In this paper, we first provide some exact values and bounds of grk(P5:Kt). Moreover, we define the k-colored bipartite Gallai–Ramsey number bgrk(G:H) as the minimum integer n such that n2k and for every Nn, every rainbow G-free coloring (using all k colors) of the complete bipartite graph KN,N contains a monochromatic copy of H. Furthermore, we describe the structures of complete bipartite graph Kn,n with no rainbow P4 and P5, respectively. Finally, we find the exact values of bgrk(P4:Ks,t) (1st), bgrk(P4:F) (where F is a subgraph of Ks,t), bgrk(P5:K1,t) and bgrk(P5:K2,t) by using the structural results.  相似文献   

6.
7.
The tensor product (G1,G2,G3) of graphs G1, G2 and G3 is defined by V(G1,G2,G3)=V(G1)×V(G2)×V(G3)and E(G1,G2,G3)=((u1,u2,u3),(v1,v2,v3)):|{i:(ui,vi)E(Gi)}|2.Let χf(G) be the fractional chromatic number of a graph G. In this paper, we prove that if one of the three graphs G1, G2 and G3 is a circular clique, χf(G1,G2,G3)=min{χf(G1)χf(G2),χf(G1)χf(G3),χf(G2)χf(G3)}.  相似文献   

8.
We consider the structure of H-free subgraphs of graphs with high minimal degree. We prove that for every k>m there exists an ???(k,m)>0 so that the following holds. For every graph H with chromatic number k from which one can delete an edge and reduce the chromatic number, and for every graph G on n>n0(H) vertices in which all degrees are at least (1??)n, any subgraph of G which is H-free and contains the maximum number of copies of the complete graph Km is (k?1)-colorable.We also consider several extensions for the case of a general forbidden graph H of a given chromatic number, and for subgraphs maximizing the number of copies of balanced blowups of complete graphs.  相似文献   

9.
《Discrete Mathematics》2022,345(5):112801
Let G and H be simple graphs. The Ramsey number r(G,H) is the minimum integer N such that any red-blue-coloring of edges of KN contains either a red copy of G or a blue copy of H. Let mK1,t denote m vertex-disjoint copies of K1,t. A lower bound is that r(mK1,t,nK1,s)m(t+1)+n?1. Burr, Erd?s and Spencer proved that this bound is indeed the Ramsey number r(mK1,t,nK1,s) for t=s=3, m2 and mn. In this paper, we show that this bound is the Ramsey number r(mK1,t,nK1,s) for ts=3,m2 and mn. We also show that this bound is the Ramsey number r(mK1,t,nK1,s) for s4,t>s(s?1)2 and m>n.  相似文献   

10.
11.
《Discrete Mathematics》2019,342(4):1028-1037
For a given pair of two graphs (F,H), let R(F,H) be the smallest positive integer r such that for any graph G of order r, either G contains F as a subgraph or the complement of G contains H as a subgraph. Baskoro, Broersma and Surahmat (2005) conjectured that R(F,Kn)=2(n1)+1for n3, where F is the join K1+K2 of K1 and K2. In this paper, we prove that this conjecture is true for the case n=6.  相似文献   

12.
Let rk(C2m+1) be the k-color Ramsey number of an odd cycle C2m+1 of length 2m+1. It is shown that for each fixed m2, rk(C2m+1)<ckk!for all sufficiently large k, where c=c(m)>0 is a constant. This improves an old result by Bondy and Erd?s (1973).  相似文献   

13.
14.
15.
For k given graphs G1,G2,,Gk, k2, the k-color Ramsey number, denoted by R(G1,G2,,Gk), is the smallest integer N such that if we arbitrarily color the edges of a complete graph of order N with k colors, then it always contains a monochromatic copy of Gi colored with i, for some 1ik. Let Cm be a cycle of length m and K1,n a star of order n+1. In this paper, firstly we give a general upper bound of R(C4,C4,,C4,K1,n). In particular, for the 3-color case, we have R(C4,C4,K1,n)n+4n+5+3 and this bound is tight in some sense. Furthermore, we prove that R(C4,C4,K1,n)n+4n+5+2 for all n=?2?? and ?2, and if ? is a prime power, then the equality holds.  相似文献   

16.
17.
《Discrete Mathematics》2022,345(3):112731
Let α(G) be the matching number of a graph G. A characterization of the graphs with given maximum odd degree and smallest possible matching number is given by Henning and Shozi (2021) [13]. In this paper we complete our study by giving a characterization of the graphs with given maximum even degree and smallest possible matching number. In 2018 Henning and Yeo [10] proved that if G is a connected graph of order n, size m and maximum degree k where k4 is even, then α(G)nk(k+1)+mk+1?1k(k+1), unless G is k-regular and n{k+1,k+3}. In this paper, we give a complete characterization of the graphs that achieve equality in this bound when the maximum degree k is even, thereby completing our study of graphs with given maximum degree and smallest possible matching number.  相似文献   

18.
Let G be a simple connected graph with n vertices and m edges. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. In this paper, we firstly consider the effect on the spectral radius of a graph by removing a vertex, and then as an application of the result, we obtain a new sharp upper bound of ρ(G) which improves some known bounds: If (k?2)(k?3)2m?nk(k?3)2, where k(3kn) is an integer, then ρ(G)2m?n?k+52+2m?2n+94.The equality holds if and only if G is a complete graph Kn or K4?e, where K4?e is the graph obtained from K4 by deleting some edge e.  相似文献   

19.
20.
In the papers (Benoumhani 1996;1997), Benoumhani defined two polynomials Fm,n,1(x) and Fm,n,2(x). Then, he defined Am(n,k) and Bm(n,k) to be the polynomials satisfying Fm,n,1(x)=k=0nAm(n,k)xn?k(x+1)k and Fm,n,1(x)=k=0nBm(n,k)xn?k(x+1)k. In this paper, we give a combinatorial interpretation of the coefficients of Am+1(n,k) and prove a symmetry of the coefficients, i.e., [ms]Am+1(n,k)=[mn?s]Am+1(n,n?k). We give a combinatorial interpretation of Bm+1(n,k) and prove that Bm+1(n,n?1) is a polynomial in m with non-negative integer coefficients. We also prove that if n6 then all coefficients of Bm+1(n,n?2) except the coefficient of mn?1 are non-negative integers. For all n, the coefficient of mn?1 in Bm+1(n,n?2) is ?(n?1), and when n5 some other coefficients of Bm+1(n,n?2) are also negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号