首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
单质硫具有理论能量密度高(2600 Wh·kg-1)、放电比容量高(1672mAh·g-1)、成本低等优势,是锂硫电池的理想正极材料。然而,在充放电过程中硫正极迟缓的反应动力学显著地限制了锂硫电池的性能。金属单原子催化剂(SMACs)具有独特的电子结构、金属含量低、理论上100%的原子利用率、催化活性高等优势,其不仅有效地促进了不同中间相的转化反应,而且可为含硫物质提供丰富的锚定位点,从而显著优化硫正极氧化还原反应动力学、多硫化物的穿梭行为和锂硫电池电化学性能。本文以剖析金属单原子催化剂与硫正极间的相互作用为出发点,结合其催化效应表征技术,重点解析了不同类型单原子催化剂的构筑策略、活性调控及其优化硫正极氧化还原行为的机制,展望了金属单原子催化剂在锂硫电池领域面临的挑战和未来发展方向。  相似文献   

2.
锂硫电池是高能量密度储能体系的重要发展方向, 但其本征的“固-液-固”转化过程缓慢, 穿梭效应的存在使其循环寿命和能量密度远低于理论值. 如何加速硫的可逆反应成为实现锂硫电池变革性突破的关键. 近年来, 催化过程在锂硫电池研究中崭露头角, 高效催化剂的引入能够降低硫转化的势垒, 加速“固-液-固”转化进程, 提高硫的利用率, 从“准源头”上降低穿梭效应发生的概率, 减少电解液需求量, 提升锂硫电池整体性能. 本文综合评述了锂硫电池中高效催化材料的研究进展, 提出原位表征技术对催化机理研究的重要性和紧迫性, 并对锂硫电池未来的技术发展趋势进行了展望.  相似文献   

3.
锂硫电池具有高理论能量密度(2600 Wh/kg)和高理论比容量(1675 mA·h/g),被视为最有可能替代锂离子电池实现商业应用的电化学储能系统之一。然而,锂硫电池所固有的缓慢氧化还原动力学和多硫化物的“穿梭效应”等问题严重影响了锂硫电池的循环性能以及循环寿命。目前,大部分综述主要集中于过量电解液下锂硫电池硫主体材料的设计制备方面,对贫电解液下锂硫电池性能的研究关注较少。基于此,本文介绍了贫电解液下不同电催化剂对锂硫电池氧化还原反应动力学和电化学性能的调控,主要分为非金属催化剂和金属催化剂两类,其中非金属催化剂包括非金属化合物、石墨烯、碳纳米管以及杂原子掺杂碳材料;金属催化剂包括钴基催化剂、钼基催化剂、铁基催化剂以及多金属基异质结构。最后,对推动锂硫电池实现商业应用需要进一步开展的研究提出了思考并进行了展望。  相似文献   

4.
杨蓉  李兰  任冰  陈丹  陈利萍  燕映霖 《化学进展》2018,30(11):1681-1691
锂硫电池是以锂为负极,单质硫为正极的二次电池,具有高达1675 mA·h/g的比容量及2600 W·h/kg的比能量密度。理论上讲,相较于现有的锂离子电池,锂硫电池可使容量扩展5倍,这使其成为最有前景的锂离子电池。由于硫正极的绝缘性以及充放电过程中活性物质易溶于电解液,导致其可实现的能量密度远低于理论值。异原子掺杂石墨烯因具有优异的导电性,且对多硫化锂(LiPS)具有强的吸附作用而被广泛应用于锂硫电池,有效缓解了"穿梭效应",提高了电池的循环稳定性。本文主要从单原子掺杂、双原子掺杂两方面综述了异原子(如N,P,S,B)掺杂石墨烯在锂硫电池领域的研究现状,详细分析了其应用于锂硫电池的作用机理,并从掺杂量、掺杂形式、掺杂位置等方面对电池性能的提升进行了梳理和展望。  相似文献   

5.
锂硫电池体系由于理论能量密度高和硫材料资源丰富,成为了极具发展潜力的二次电池之一.但由于放电过程中间产物多硫化物溶于有机电解液,产生穿梭效应,导致活性物质利用率低,造成电池容量损失和循环性能下降,而锂金属枝晶和界面问题同样限制了锂硫电池的进一步发展和利用.研究表明,电池结构设计和改造,如隔膜结构设计、正极夹层设计、正极载硫结构设计以及负极结构设计等方面,有效地缓解了上述问题.本文整理总结了近年来国内外在锂硫电池结构设计上研究思路和进展,并对今后的发展趋势做了进一步展望.  相似文献   

6.
王欣  张冬  杜菲 《应用化学》2022,39(4):513-527
锂硫电池因其较高的理论比容量和能量密度而成为最有前途的下一代储能系统之一。然而,硫和放电产物硫化锂的低导电率、可溶性多硫化锂(LiPSs)的穿梭以及缓慢的反应动力学致使锂硫电池的循环寿命短、倍率性能低。近年来,研究表明具有强催化活性的单原子(SAs)是理想的LiPSs锚定中心和催化位点。用SAs修饰正极和隔膜有助于吸附多硫化物并催化其转化,修饰负极则可显著提高锂的剥离/沉积效率,抑制锂枝晶的生长。本文综述了SAs在锂硫电池中的研究进展,包括材料合成、表征方法以及应用方向。最后,对SAs应用在电池中所面临的挑战和未来发展方向进行总结。  相似文献   

7.
随着全球经济快速发展对高效绿色能源需求的不断增长,锂-硫电池因具有较高的能量密度,成为了下一代高能量密度二次电池研发的重点.然而,锂-硫电池面临的循环寿命短、库仑效率低、安全性能差、较高自放电等问题,使其目前还很难实现商品化.锂-硫电池存在的这些问题主要与正极活性硫材料的高绝缘性、放电过程中产生的多硫化物溶解于电解液、硫正极在充放电过程中的体积膨胀与收缩、以及锂负极支晶化等有关.通过从锂-硫电池硫复合正极、电解液、黏结剂和负极等4个方面综述了高比能锂-硫电池的最新研究进展,其中重点介绍了硫正极复合材料的进展情况.  相似文献   

8.
锂离子电池是目前广泛应用的高能量密度小型二次电池,但随着其应用领域突飞猛进的发展,迫切需要进一步提高其能量密度.本文介绍了近年来高能量密度锂离子电池正、负极材料及新型高能量密度锂二次电池体系方面的研究进展;结合本实验室的研究工作,着重介绍了高容量正、负极材料的选择、微纳结构设计、表面包覆和合成策略;讨论了锂硫电池、锂空气电池等高比能金属锂二次电池的未来发展方向.  相似文献   

9.
锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之一。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体、隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯、掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。  相似文献   

10.
锂硫电池是极具应用潜力的下一代高能量密度电池体系之一。然而,其充放电中间产物多硫化锂的“穿梭效应”不仅消耗大量电解液,还导致硫活性物质利用率低、循环寿命短,是锂硫电池产业化进程中的主要瓶颈之一。引入催化剂加速硫活性物质转化速率,减少多硫化锂在电解液中的累积浓度,是抑制穿梭效应的有效解决策略。高效的催化剂应具备丰富的催化活性位点,以确保高效吸附多硫化锂并加速其向不溶的充放电产物转化。本文制备出硫掺杂石墨烯表面原位负载的双金属硫化物NiCo2S4(NCS@SG)并将其作为催化剂应用于锂硫电池的中间层。相比于单金属硫化物(CoS),NiCo2S4催化剂具有多活性中心催化位点,可以更好地吸附多硫化锂并促进其向放电产物快速转化。应用上述中间层后,电池的充放电比容量、库仑效率和循环稳定性得到了明显提升。当硫的负载达到15.3 mg·cm-2时,经过50次循环后,具有NCS@SG中间层的电池获得了高达93.9%的容量保持率。上述结果表明,设计双金属基催化剂是优化锂硫电池催化剂活性和反应效率的...  相似文献   

11.
Clean and sustainable electrochemical energy storage has attracted extensive attention. It remains a great challenge to achieve next-generation rechargeable battery systems with high energy density, good rate capability, excellent cycling stability, efficient active material utilization, and high coulombic efficiency. Many catalysts have been explored to promote electrochemical reactions during the charge and discharge process. Among reported catalysts, single-atom catalysts (SACs) have attracted extensive attention due to their maximum atom utilization efficiency, homogenous active centres, and unique reaction mechanisms. In this perspective, we summarize the recent advances of the synthesis methods for SACs and highlight the recent progress of SACs for a new generation of rechargeable batteries, including lithium/sodium metal batteries, lithium/sodium–sulfur batteries, lithium–oxygen batteries, and zinc–air batteries. The challenges and perspectives for the future development of SACs are discussed to shed light on the future research of SACs for boosting the performances of rechargeable batteries.

Single-atom catalysts are reviewed, aiming to achieve optimized properties to boost electrochemical performances of high-energy batteries.  相似文献   

12.
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.  相似文献   

13.
Due to excellent performance properties such as strong activity and high selectivity, single-atom catalysts have been widely used in various catalytic reactions. Exploring the application of single-atom catalysts and elucidating their reaction mechanism has become a hot area of research. This article first introduces the structure and characteristics of single-atom catalysts, and then reviews recent preparation methods, characterization techniques, and applications of single-atom catalysts, including their application potential in electrochemistry and photocatalytic reactions. Finally, application prospects and future development directions of single-atom catalysts are outlined.  相似文献   

14.
锂硫电池因具有高理论比容量和性价比,被认为是具有发展潜力的新型二次电池。 但是,作为活性物质的单质硫和反应产物是电子绝缘体,充放电过程的中间产物多硫化锂在电解液中易于溶解和迁移引起“穿梭效应”和一系列的副反应,造成活性物质利用率低,电池的电化学稳定性变差。 本文综述了近年来过渡金属纳米材料应用于锂硫电池的研究进展,重点介绍了材料的合成方法以及其抑制多硫化锂溶解并促进其转化的反应机理,并对锂硫电池正极载体材料的发展方向进行了展望。  相似文献   

15.
单原子催化剂的催化活性高, 稳定性强, 原子利用率高, 在能源电催化领域已被广泛研究. 然而, 粉末状(颗粒状)单原子催化材料存在工作电极制备过程复杂、 黏结剂添加降低导电性且占据催化材料的体积、 活性位点易被包埋等问题, 在作为电极材料催化能源转化过程时, 载量通常小于1 mg/cm2, 反应电流密度不高于100 mA/cm2. 与单原子催化剂相比, 自支撑单原子膜电极不仅具有单原子催化剂的诸多优势, 同时展现出整体式电极的特点, 例如无需添加黏结剂、 导电性好、 单原子活性位点暴露率高、 形貌与孔结构可调控等, 在大电流电催化反应、 高能量高功率密度电池等领域拥有应用前景. 本文综合评述了面向能源电催化应用的自支撑单原子膜电极的研究进展, 讨论了自支撑单原子膜电极的优势, 总结了自支撑单原子膜电极的合成方法, 包括自支撑基底上原位制备法、 静电纺丝法、 自组装法、 化学气相沉积与固相扩散法等, 介绍了其在析氢反应、 析氧反应、 电化学制过氧化氢反应、 锌空电池、 二氧化碳还原反应及锂硫电池中的应用, 并对该类电极的发展方向进行了展望.  相似文献   

16.
传统Haber-Bosch工艺合成氨需要大量的能源消耗和复杂的工厂基础设备。在可再生能源的推动下,将氮气电化学还原为氨被认为是替代Haber-Bosch工艺最有效的方法,这在科学界引起了极大的关注。然而,这个过程受到氨产量和法拉第效率低的影响,因此开发更有效的电催化剂对其实际应用至关重要。在之前报告的催化剂中,单原子催化剂(SACs)在高效利用原子和不饱和配位方面表现出显著优势,这为优化催化剂性能提供了巨大的空间。文章综述了单原子催化剂在电化学合成氨中的理论研究,详细分析了贵金属催化剂、非贵金属催化剂和非金属催化剂这3类单原子催化剂的性能表现,旨在为电化学合成氨技术的发展提供理论参考。  相似文献   

17.
Constructing 3 D multifunctional conductive framework as stable sulfur cathode contributes to develop advanced lithium-sulfur(Li-S) batteries.Herein,a freestanding electrode with nickel foam framework and nitrogen doped porous carbon(PC) network is presented to encapsulate active sulfur for Li-S batteries.In such a mutually embedded architecture with high stability,the interconnected carbon network and nickel foam matrix can expedite ionic/electro nic tra nsport and sustain volume variations of sulfur.Furthermore,rationally designed porous structures provide sufficient internal space and large surface area for high active sulfur loading and polar polysulfides anchoring.Benefiting from the synergistic superiority,the Ni/PC-S cathode exhibits a high initial capacity of around 1200 mAh/g at 0.2 C,excelle nt rate perfo rmance,and high cycling stability with a low decay rate of 0.059% per cycle after 500 cycles.This work provides a useful strategy to exploit freestanding porous framework for diverse applications.  相似文献   

18.
A lamellar vermiculite separator assembled with exfoliation vermiculites is developed for lithium sulfur batteries. The vermiculite separator can simultaneously suppress the parasitic reactions induced by polysulfide intermediate shuttle, and prevent the short circuit by potential lithium dendrite penetration with the ultrahigh Young's modulus.  相似文献   

19.
Accelerating insoluble Li2S2−Li2S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2S2. However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2S2−Li2S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe−N4-based cathodes exhibit the fastest deposition kinetics of Li2S (226 mAh g−1) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2S2−Li2S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.  相似文献   

20.
惠鹏  杨蓉  邓七九  燕映霖  许云华 《化学通报》2019,82(11):982-988
锂硫电池因其能量密度高、原料丰富和价格低廉等优势而被认为是下一代的重要储能器件。但是,锂硫电池的发展仍面临诸多问题,包括多硫化物的穿梭效应、单质硫的导电性差、充电过程中硫体积膨胀导致的库仑效率差、容量快速衰减以及锂负极的腐蚀等。近年来,金属氧化物由于具有可吸附多硫化物、提高多硫化物之间的相互转化能力、形成3D形态纳米级结构及对主体材料与多硫化物之间的结合能发挥着关键作用等优点在锂硫电池正极材料的改性方面得到广泛应用。本文综述了多类金属氧化物(过渡金属氧化物、二元及多元金属氧化物、其他金属氧化物)在锂硫电池正极复合材料改性中的研究进展,并对金属氧化物在锂硫电池中的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号