首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
磷和NaHSO3交互作用对温州蜜柑叶片光合作用的影响   总被引:7,自引:0,他引:7  
经不同磷水平和8 mmol@L-1NaHSO3溶液处理后,不缺磷温州蜜柑的净光合速率(Pn)、最大荧光(Fm)、光化学效率(Fv/Fm)和电子传递速率(ETR)升高,光呼吸速率(Pr)及放O2活性无明显变化,Pr/Pn显著下降,缺磷温州蜜柑的Pn、Pr、Fm、Fv/Fm、ETR显著下降,Pr/Pn和放O2活性显著升高.无论缺磷与否,初始荧光(F0)变化不显著,O2-和H2O2的含量显著下降.认为喷洒8 mmol@L-1的HaHS03溶液有助于提高Pn,促进温州蜜柑进行光合作用.  相似文献   

2.
磷过量对温州蜜柑叶片光合作用的影响   总被引:8,自引:0,他引:8  
用营养液培养的方法,研究了磷过量对温州蜜柑叶片光合作用的影响。结果表明,磷过量使温州蜜柑叶片中无机磷含量、光呼吸/光合比(Pr/Pn)升高,净光合速率Pn、RuBP再生速率、RuBPCase活性和电子传递速率ETR下降,光合色素含量、PSⅡ光化学效率(Fv/Fm)和初始荧光F0无明显变化。  相似文献   

3.
建立了单波长X射线荧光光谱法测定加氢催化剂中磷含量的方法。将干燥催化剂样品粉末0.200 0 g置于银坩埚中,加入10 mL 0.67 g·mL~(-1)氢氧化钠溶液,加热微沸20 min,趁热转移至250 mL烧杯中,加入10 mL 50%(体积分数)硫酸溶液调节体系酸度,加热至样品完全溶解,冷却后,定容至250 mL。取上述待测液6 mL,采用Phoebe型单波长X射线荧光磷含量分析仪测定其中的磷含量,测量时间600 s。结果表明,磷的质量分数在0.006%内与其对应的荧光强度呈线性关系,检出限(3s/k)为0.4μg·g~(-1)。按标准加入法进行回收试验,回收率为93.0%~120%,测定值的相对标准偏差(n=7)均小于5.0%。方法所得测定结果与经典的分光光度法的一致。  相似文献   

4.
运用UV-Vis光谱、荧光光谱、同步荧光光谱、FT-IR光谱等手段,研究了在模拟人体生理条件下,牛血清白蛋白(BSA)与磷钼酸的相互作用。UV-Vis光谱显示,加入磷钼酸后,BSA的紫外吸收降低且吸收峰红移,表明磷钼酸与BSA形成了复合物;荧光猝灭光谱显示磷钼酸对BSA有荧光猝灭作用,且其荧光猝灭机理符合静态机制,磷钼酸与BSA结合的结合常数为:Ks=2.539×104L·mol-1;探针实验表明磷钼酸与BSA在结合位点I发生结合;Fster偶极-偶极非辐射能量转移机理确定了磷钼酸在BSA中与第214位色氨酸残基之间的距离r=1.93nm;FT-IR光谱显示磷钼酸诱导BSA的二级结构发生了变化,α-螺旋含量降低。  相似文献   

5.
用X射线荧光光谱法测定了洗衣粉中硅,铝,磷,硫的含量,并与化学法进行了比较。结果表明,本法样品处理简单,分析速度快,可用于快速确定洗衣粉的化学成分。  相似文献   

6.
X-荧光光谱法(XRF法)用于测定稀土无机化合物已有许多应用,但在测定有机及高分子化合物中金属元素、磷、卤素、硅含量方面的应用尚未见到过报道。一般用化学法测定,需先除去或破坏有机物(或高分子)后才能测定,手续繁多。对交联聚合物因不能溶解更难以测定。我们用XRF法测定了高分子金属配合物中稀土元素的含量,含硅交联树脂中硅的含量以及有机物中磷的含量。简要方法如下:测定可溶性样品时用与薄样法类似的点滴滤纸法,分别以稀土硝酸盐、氯化钠、磷酸二氢钾为标准样品,测定稀土、氯、磷含量  相似文献   

7.
本文讨论了用X-荧光光谱法测定高分子络合物中稀土金属元素的含量,有机物中的磷含量及合硅交联树脂中的硅含量。本法具有简便,用量少,又可减少化学法污染环境等优点。这是将X-荧光光谱法扩大用于有机物及高分子成分分析领域的新方法。  相似文献   

8.
吖啶橙-罗丹明6G能量转移荧光法测定痕量磷   总被引:12,自引:0,他引:12  
在λex/λem=450/556nm,十二烷基苯磺酸钠(DBS)存在下,吖啶橙-罗丹明6G能够能有效能量转移,使罗丹明6G荧光大大增强,酸性条件下,正酸根与钼酸钼反应生成磷钼酸,磷钼酸与R6G形成离子缔合物,使R6G的光猝来利用吖淀橙-罗丹明6G能量转变荧光法测定痕量磷,提高了测定磷的灵敏度和选择性,磷含量的0.05~0.70μg/L 范围内与罗丹明6G的荧光猝程度呈良好的线性关系.最低检出限为5ng/L,回收率为95%~110%,测定0.50μg/L,磷溶液,相对标偏差为6%,该法用于水样及土壤中的活性磷的测量,结果满意.  相似文献   

9.
熔融制样X射线荧光光谱法测定电解锰中锰、硅、磷和铁含量。用熔融后的四硼酸锂制作铂金坩埚保护层,以BaO2做氧化剂,在马弗炉内通过逐渐升温来氧化电解锰,然后熔融制取玻璃熔片,用X射线荧光(XRF)光谱法分析电解锰中锰、硅、磷和铁含量。锰、硅、磷和铁的相对标准偏差RSD分别为0.23%、2.82%、0.31%和0.53%。与其它分析方法比较,其结果更稳定。有效消除了电解锰熔融制样过程中的坩埚腐蚀问题,分析误差可完全控制在国家相关标准允许的范围内,实现了电解锰中各元素的快速准确测定。  相似文献   

10.
在KH2PO4- Na2HPO4缓冲溶液中,离子缔合物[MB]+·[B(C6H5)4]–可发射强而稳定的荧光,牛血清蛋白(BSA)能使[MB]+·[B(C6H5)4]–的荧光信号显著猝灭,聚乙二醇(PEG)对荧光信号猝灭的有强的增敏作用,加PEG比不加PEG时,ΔF(= F0-F,其中,F0与F分别为试剂空白和试液的荧光强度)值提高了9.1倍,且ΔF与BSA含量具有良好的线性关系,据此建立了新型荧光探针荧光猝灭法测定痕量蛋白质的新方法。本方法的线性范围为0.11 ~ 88.0 ag/mL,检出限:22.0 ag /mL BSA,灵敏度很高,并成功用于人血清样品中蛋白含量的测定。同时探讨了新方法的反应机理。在相同条件下,新方法可分别测定BSA、人血清白蛋白(human serum albumin,HAS)、卵蛋白(ovalbumin,OVA )、γ-球蛋白(γ-globulin,γ-G)及血清、脑脊液样品中蛋白质总量。  相似文献   

11.
The laser-induced fluorescence spectra of leaves of Zea mays L. plants treated with different concentrations (0.01, 0.10 and 1.00 mM) of cadmium were recorded in region 650–800 nm using 488 nm line of Argon Ion laser as excitation source and PMT as detector. Besides this, blue-green fluorescence and Chl fluorescence were also measured using third harmonic (355 nm) of Nd:YAG laser as excitation source and 320 M monochromator with intensified charge coupled device as a detector in the region 400–800 nm. These spectra have been used to analyse the effect of several doses of cadmium on the photosynthetic activities of Z. mays L. plants. The fluorescence intensity ratios (FIR) of control as well as treated Z. mays L. were calculated by evaluating curve-fitted parameters using Gaussian spectral function. In addition, growth parameters like photosynthetic pigments content were also estimated. The chlorophyll fluorescence intensity ratio F685/F735 excited by both 488 and 355 nm lines are strongly correlated with photosynthetic pigments content (total chlorophyll and carotenoids) and their ratios. Consequently, there also existed a correlation between the blue-green fluorescence intensity ratio F470/F540 and photosynthetic pigments content.  相似文献   

12.
The effect of irradiance (40 and 840 micromol photons m(-2) s(-1)) of short-term (48 h) irradiation on photosynthetic activity (estimated as oxygen evolution and as chlorophyll fluorescence), specific absorption and fluorescence excitation spectra, photosynthetic pigment accumulation (chlorophyll a and biliproteins) and UV-absorbing compounds (mycosporine-like amino acids, MAAs) was investigated in sun and shade species of the red algal genus Porphyra collected in Trondheimsfjord (Norway). In the sun type, high irradiance exposure (840 micromol photons m(-2) s(-1)) did not alter the Chl a concentration, however, exposure to a lower irradiance (40 micromol photons m(-2) s(-1)) for 48 h significantly increased the chlorophyll concentration. The content of MAAs was significantly higher in the suntype than in the shade type algae. Porphyra-334 is the main MAA in this species followed by shinorine. The total content of MAAs significantly (P<0.05) increased in the sun type after 48 h exposure to both high and low irradiances. However, in the shade type, porphyra-334 significantly decreased (P<0.05) after both high and low irradiance exposure. Photosynthetic activity (as oxygen evolution) and the optimal quantum yield (F(v)/F(m)), as an indicator of photoinhibition, decreased under low and high irradiance in the shade type algae and no full recovery was observed when the algae were transferred to very low irradiation.The sun type algae presented a higher capacity of acclimation to increased irradiance than the shade type algae. This high acclimation of sun type algae to short term high irradiance exposure (48 h) is explained by the higher thermal dissipation. This was estimated as the ratio of nonphotochemical quenching related to the light dose (q(N):dose) and by the accumulation of MAAs.  相似文献   

13.
In this study, we investigated the increase in photosynthetic quantum yield that occurs in advance of increased microalgal growth. Haematococcus pluvialis was cultivated under normal conditions; the number of cells, the maximum quantum yield of photosystem II (F(v)/F(m)), and optical density were measured. We observed an increase in F(v)/F(m) approximately 72h prior to the cell growth phase. To confirm the relationship between photosynthetic yield and growth, samples were treated with several chemicals under high-intensity light illumination and control conditions to inhibit photosystem II and induce a decrease in the quantum photosynthetic yield. The samples were exposed to high-intensity light at an irradiance of 400μmol photonsm(-2)s(-1) for varied amount of time and were treated with chemicals such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea, nigericin sodium salt and valinomycin. We observed that both the photooxidation of photosystem II reaction centers and the formation of transmembrane electrochemical gradients led to an initial decrease in fluorescence yield after the onset of high-intensity light illumination. We also observed that treatment of high-intensity light illuminated cells with antibiotics after adaptation to moderate light intensities caused a difference in photosynthetic activity. In conclusion, the maximum quantum yield of photosystem II is obtained prior to the cell growth phase and can therefore be used as a prediction parameter for cell growth.  相似文献   

14.
Two physiological tests for screening drought tolerance of barley (Hordeum vulgare, L.) plants are compared in this work. Water deficit is induced by treating the plants' roots with polyethylene glycol (PEG 8000). The relative water content (RWC) of the plants is used as a measure of the water status. Conductometrically determined electrolyte leakage from the leaf tissue demonstrates the membrane injury caused by dehydration. It is shown that the injury index increases with the decrease of the RWC of the leaves. The F(v)/F(m) ratio is employed to assess changes in the primary photochemical reactions of the photosynthetic apparatus after dehydration. The results suggest that PSII is weakly affected by the imposed osmotic stress. The fluorescence behaviour of the examined cultivars is related to their RWC.  相似文献   

15.
The impact of UV-B radiation on photosynthetic related parameters was studied in Oryza sativa L. cv. Safari plants, after an UV-B irradiation performed 1h per day for 7days (between 8 and 14days after germination) with a ten narrow-band (λ 311nm) that resulted in a total biological effective UV-B (UVB(BE)) of 2.975kJm(-2)day(-1) and a total of 20.825kJm(-2). Gas exchange measurements were severely affected, showing reductions higher than 80% in net photosynthesis (P(n)), stomatal conductance and photosynthetic capacity (A(max)), 1day after the end of the 7-days UV-B treatment. Similarly, several fluorescence parameters (F(o), F(v)/F(m), Fv'/Fm', ?(e), q(P) and q(E)) and thylakoid electron transport (involving both photosystems) were also severely reduced. Concomitantly, a decline of xanthophylls, carotenes, Chl a, Chl (a+b) and Chl (a/b) values was accompanied by the increase of the lipoperoxidation level in chloroplast membranes, altogether reflecting a loss of protection against oxidative stress. Seven days after of the end of UV-B treatment, most fluorescence parameters recovered, but in P(n), A(max), thylakoid electron transport rates, Chl a and lipid classes, as well as the level of lipoperoxidation, the impacts were even stronger than immediately after the end of stress, denoting a clear loss of performance of photosynthetic structures. However, only a moderate impact on total lipids was observed, accompanied by some changes in the relative weight of the major chloroplast membrane lipid classes, with emphasis on the decrease of MGDG and the increase of phospholipids. That suggested an ability to de novo lipid synthesis allowing qualitative changes in the lipid matrix. Notably, the leaves developed after the end of UV-B irradiation showed a much lower impact, with significantly decreased values only in P(n) and g(s), rises in several fluorescence parameters, thylakoid electron transport, photosynthetic pigments (xanthophylls and chls) and DEPS, while lipid classes presented values close to control. The results showed a global impact of UV-B in the photosynthetic structures and performance in irradiated leaves, but revealed also a low impairment extent in the leaves entirely developed after the end of the irradiation, reflecting a remarkable recovery of the plant after the end of stress, what could constitute an advantage under occasional UV-B exposure events in this vital worldwide staple food crop.  相似文献   

16.
We studied the effects of high-light exposure (500 micromol m(-2) s(-1) of photosynthetic active radiation) on the cyanobacteria Nostoc spongiaeforme Agardh, a fresh-water alga, and Phormidium corium Agardh (Gomont), a marine alga, with respect to photosynthesis, pigments, sugar content, lipid peroxidation, fatty acids composition, antioxidant enzymes activity and DNA. It was seen that the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm), which is indicative of photosynthetic efficiency, decreased because of the light treatment. The damage to photosynthesis occurred in the antenna system and the photosynthetic II reaction center. Photobleaching of photosynthetic pigments was also observed. High-light treatment also resulted in decreased sugar content, which was probably due to the effect on photosynthesis. Peroxidation of membrane lipids, indicating oxidative damage to lipids and a high level of unsaturation in the cell membrane, was also observed. The activity of antioxidant enzyme superoxide dismutase and ascorbate peroxidase was increased, probably as a result of oxidative damage observed in the form of lipid peroxidation. Quantitative decreases in phospholipid and glycolipid levels were also observed. The level of unsaturated fatty acids in total lipids and glycolipids remained unchanged in both species; however, the level of saturated fatty acids decreased, which slightly changed the ratio in favor of unsaturated fatty acids. Degradation of DNA was also observed in both species. There was a transient plateau 2-4 h after exposure to high-light treatment in the Fv/Fm ratio and in levels of phycobilisome pigments, sugars and antioxidant enzymes after an initial decrease 1 h after the treatment. These findings may indicate a period of partial adaptation to high light that is due to the efficiency of protective processes operational in the two species, which subsequently failed after a longer exposure duration of 4-6 h.  相似文献   

17.
A growth-chamber experiment was conducted to evaluate whether ethylenenediurea (EDU), a chemical shown to be protective against ozone pollution, could ameliorate foliar damage induced by ultraviolet-B (UV-B) radiation exposure in 'Roanoke' soybean (Glycine max L.), a UV-B-sensitive cultivar, and whether these effects could be discriminated using fluorescence (F) observations. The experiment had four treatment groups: control; biologically effective UV-B (18 kJ m(-2) day(-1)); EDU (500 micromol mol(-1)); and both UV-B and EDU (UV/EDU). Measurements included photosynthetic pigments, F image system (FIS) images of adaxial surfaces in four spectral regions (blue, green, red and far-red) and F emission spectra of the pigment extracts produced at two excitation wavelengths, 280 nm (280EX) and 380 nm (380EX). Several F ratios from 280EX, 380EX and the FIS images successfully separated the low UV vs high EDU group responses based on means alone, with intermediate values for controls and the combined UV/EDU groups. A UV-B/blue emission ratio, F315/F420 (280EX), was correlated with chlorophyll content (microg cm(-2))(R = 0.88, P < 0.001), as was a ratio of emissions at two UV-A wavelengths: F330/F385 (280EX) (R = 0.87). These two 280EX ratios were also linearly correlated with emission ratios produced by 380EX, such as the far-red/green ratio, F730/F525 (380EX) (R = 0.92, P < 0.001), and clearly distinguished the UV-B and EDU groups separately, and which bracketed the similar intermediate responses of the UV/EDU and control groups. The FIS images additionally captured the following anatomical spatial patterns across the leaf surfaces: (1) emissions of UV-B-irradiated leaves were more uniform but lower in intensity than those of other groups; and (2) emissions of EDU-treated leaves exhibited the greatest variation in spatial patterns because veins had elevated blue F and leaf edges had enhanced red and far-red F. This experiment supports the hypothesis that EDU substantially ameliorated UV-B damage to foliage, a result that relied on the combined use of FIS images and emission spectra.  相似文献   

18.
The aquatic higher plant Spirodela oligorrhiza , which contains proplastids when grown in the dark, was used to study light-dependent chloroplast development. Low-temperature (77 K) and room temperature fluorescence were utilized in situ on whole plants to examine plastid development. The dark-grown plants contain two 77 K fluorescence peaks, at 633 nm (F633) and at 657 nm (F657), with F633 dominating. The F657 species represents protochlorophyllide that is bound to protochloro-phyllide oxidoreductase. It was rapidly phototrans-formed to chlorophyllide (within 5 s) via a monomolec-ular reaction. Free protochlorophyllide (F633) was converted to chlorophyllide during a 3 h exposure to light. Photosystem (PS) assembly in Spirodela could be detected 2 h after the plants were first exposed to light, with the PSII reaction center (77 K fluorescence at 684 nm) appearing slightly before the PSI reaction center (77 K fluorescence at 725 nm). After the first reaction centers were formed the antenna complexes were added; the light-harvesting complex (LHC) I of PSI appeared after 8 h, and 47 kDa chlorophyll protein of PSII appeared between 12 h and 24 h. After 30 h of exposure to light, the plants acquired the ability to perform a light state transition, marking the appearance of functional LHCII complexes in the developing chloroplast. Finally, it was found that photosynthetic activity, as measured by room temperature chlorophyll fluorescence, accelerated con-comitantly with detection of the antenna complexes. Therefore, although reaction centers are detected very early during the proplastid to chloroplast conversion, they may have little activity or be unstable until the antennae are present.  相似文献   

19.
Acclimation of the photosynthetic apparatus of chlorophyll b-less barley mutant chlorina f2 to low light (100 micromolm(-2)s(-1); LL) and extremely high light level (1000 micromolm(-2)s(-1); HL) was examined using techniques of pigment analysis and chlorophyll a fluorescence measurements at room temperature and at 77 K. The absence of chlorophyll b in LL-grown chlorina f2 resulted in the reduction of functional antenna size of both photosystem II (by 67%) and photosystem I (by 21%). Chlorophyll fluorescence characteristics of the LL-grown mutant indicated no impairment of the utilization of absorbed light energy in photosystem II photochemistry. Thermal dissipation of excitation energy estimated as non-photochemical quenching of minimal fluorescence (SV(0)) was significantly higher as compared to the wild-type barley grown under LL. Despite impaired assembly of pigment-protein complexes, chlorina f2 was able to efficiently acclimate to HL. In comparison with chlorina f2 grown under LL, HL-grown chlorina f2 was characterized by unaffected maximal photochemical efficiency of photosystem II (F(V)/F(M), doubled content of both beta-carotene and the xanthophyll cycle pigments and considerably reduced efficiency of excitation energy transfer from carotenoids to chlorophyll a. The enormous xanthophyll cycle pool size was however associated with reduced SV(0) capacity. We suggest that the substantial part of the xanthophyll cycle pigments is not bound to the remaining pigment-protein complexes and acts as filter for excitation energy, thereby contributing to the efficient photoprotection of chlorina f2 grown under HL.  相似文献   

20.
Effects of elevated CO? on photosynthetic CO? assimilation, PSII photochemistry and photoinhibition were investigated in the leaves of a fast growing tropical tree species, Gmelina arborea (Verbenaceae) during summer days of peak growth season under natural light. Elevated CO? had a significant effect on CO? assimilation rates and maximal efficiency of PSII photochemistry. Chlorophyll a fluorescence induction kinetics were measured to determine the influence of elevated CO? on PSII efficiency. During midday, elevated CO?-grown Gmelina showed significantly higher net photosynthesis (p<0.001) and greater F(V)/F(M) (p<0.001) than those grown under ambient CO?. The impact of elevated CO? on photosynthetic rates and Chl a fluorescence were more pronounced during midday depression where the impact of high irradiance decreased in plants grown under elevated CO? compared to ambient CO?-grown plants. Our results clearly demonstrate that decreased susceptibility to photoinhibition in elevated CO? grown plants was associated with increased accumulation of active PSII reaction centers and efficient photochemical quenching. We conclude that elevated CO? treatment resulted in easy diminution of midday photosynthetic depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号