首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
晶体应力光学系数的研究   总被引:1,自引:0,他引:1  
在以往关于晶体材料的应力双折射的标准中,都忽略了晶体在光弹方面所表现出的特殊性质,而将其与玻璃等同起来,应力仅以材料最长边中部或边缘单位长度上的光程差来表示。这与实际情况相差很大。本文从结构对称的立方晶系晶体入手,深入研究了晶体应力光学系数这一参量,提出晶体的应力光学系数不仅取决于材料,还与应力的取向、观察者的观察方向有关。并发现立方晶系晶体(111)面具有各向同性性质和在[111]方向应力状态下应力光学系数与观察方向无关的特性。另外还发现光波进入有应力的晶体后所分解的两束相互垂直的偏振光,有时其振动方向并不与应力方向平行,而是发生了偏转。这些研究将为晶体应力测量提供了科学依据  相似文献   

3.
4.
During thermal cycling, the residual stresses are often generated in the film/substrate bilayer due to the material mismatch between the substrate and the film. If the thickness of the film is relatively high, the thermal residual stresses in it may be of different signs. When the film is subjected to elastic-plastic deformation, two plastic zones with different thicknesses may be generated in the film at a significantly high temperature difference. In this paper, a theoretical model which reflects the complete history of thermal residual stresses and curvatures in the elastoplastic film/substrate bilayer system is developed. Solutions are derived to estimate the residual stresses and curvature in the film as functions of temperature difference. The case of Al/Si system is used to illustrate the implementation of this model. Results show that the critical temperature difference at which the second plastic zone near the film surface is generated near the Al film surface is dependent on the film thickness. The strain hardening of the film has an obvious influence on the magnitude of residual stresses within the film at high temperature difference.  相似文献   

5.
This paper presents a method for evaluating residual stresses. The approach is based on measuring the deformation due to the relief of stress produced by a drilled-hole or a ball indentation, and the deformation is rapidly measured by digital shearography. This method does not require mounting strain gages/transducers. Unlike holography, shearography does not require special vibration isolation. These features make the method practical for evaluation of residual stresses in a production/field environment.  相似文献   

6.
A transition model, which is capable of obtaining both membrane and bending residual stress components from initial experimental information, is developed for thin-walled plane structures. The determination of residual stresses is based on the combined implementing of the hole-drilling method and reflection hologram interferometry. Required input data are obtained by simultaneous measurements on through hole distortions in two principal strain directions on opposite sides of thin plane specimen. These sides are faces of the drill entrance and exit. Superimposed residual stresses field, which consists of both membrane and bending components, is a reason for the various deviations of each specific fringe pattern from an ideal form. This fact is a clear experimental indication of the bending stress contribution in a total stress field. Two ways of decomposition of superimposed residual stresses field are proposed and analysed in detail. Emphasis is laid on a careful quantitative formulation of the inverse problem needed for an accurate deriving both membrane and bending residual stress components. It is shown that an availability of two-side initial data is both an essential and necessary condition of such a formulation. Detailed analysis of an accuracy of the results obtained is performed. This analysis is based on a wide set of both actual interferograms and analogous reference fringe patterns related to superimposed residual stress field under study. Comparing residual stress values obtained proceeding from one-side and two-side data are presented for different types of superimposed field of interest.  相似文献   

7.
Main features inherent in simplified approach to residual stresses determination in cylindrical shells and tubes, external diameter of which is not less than 60 mm, by combing the hole-drilling method and reflection hologram interferometry are discussed in detail. Initial experimental information in a form of hole diameter increments in principal stress directions is derived from high-quality reflection holograms recorded near cylindrical objects of intermediate curvature value. Converting measured parameters into required stress values is based on the transition model that corresponds to plane stress conditions of pure membrane type. The technique developed is capable of determining residual stress component values within 5% accuracy in an absence of stress gradients over the probe hole diameter when a type of residual stress field corresponds to the transition model adopted. The accuracy analysis involved is based on matrix formulation of conventionally direct problem and an assumption on a pure membrane character of residual stress field under study for thin-walled shell. Required error estimations in a case of inspecting thick-walled cylindrical tube are obtained by combining the above-mentioned approach and an analogy of reconstructed fringe patterns with actual and artificial interferograms, which follow from drilling blind hole of the same geometrical parameters in thick-walled plates. Experimental verification of the developed approach is founded upon a determination of actual stresses in thin-walled cylindrical shell and obtaining residual stress distributions at the proximity of welded joint in thick-walled cylindrical tube.  相似文献   

8.
Most designers take into consideration the stresses that act on a material but despite safety considerations, failure may occur due to other factors that were neglected in their design. These factors can be a pre-existing flaw, microstructure deficiency or the presence of residual stresses. Depending on the stress type, residual stresses combined with applied stresses can aid or hinder failures. Consequently, reducing the amount of residual stress can have a promising effect on the life of the component. Different casting parameters can change the microstructure and residual stresses of castings. In this research, the relation between residual stresses and microstructure evolution under the influence of different casting parameters was investigated, using both Al–Si–Mg (Al-356) and Al–Si–Mg–Cu (Al-319) alloys. Solidification rate, quenching rate, aging temperature and aging time were the main parameters considered for this study. The results indicate that the magnitude of the residual stresses increases with increasing solidification rate and quenching rate. Also, the residual stress relieving is proportional to the aging temperature  相似文献   

9.
Neutron diffraction study of residual stresses in materials became widely used in the world due to high penetrating power of neutrons. Therefore, to study residual stresses, the FSD (Fourier stress diffractometer) was developed at the IBR-2 reactor channel (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia), which, due to a special correlation technique (a fast Fourier chopper for modulating the primary neutron beam intensity and the RTOF method for data acquisition) makes it possible to obtain high-esolution diffraction spectra Δd/d = 4 × 10-3. This diffractometer was developed taking into account world experience in the study of residual stresses in materials; experience in the development of such devices in Russia and abroad was also used. The FSD diffractometer itself and its current state are described.  相似文献   

10.
We investigate the influence of laser treatment on the formation of residual stresses relative to the changing structure-phase composition in the surface layers of high-chromium cast iron with 16% chromium. We show that appreciable tensile stresses are produced in the region of the laser action and that their distribution depends on whether the laser treatment was or was not accompanied by surface melting. The produced residual stresses are responsible for the formation of a large number of cracks. Preheating to 400°C lowers the level of the tensile residual stresses and prevents crack formation. A pellet stream acting on the surface produces cold-work hardening layers in which the tensile stresses change into compressive ones. The depth, hardness, and magnitude of the compressive residual stresses depend on the method used to work harden the cast iron and on the angle of attack of the pellet as it acts on the surface.Translation of Preprint No. 195, Lebedev Institute of Physics, Academy of Sciences of the USSR.  相似文献   

11.
Residual stresses are often trapped in injection-molded plastic parts due to the rapid cooling of the material in this manufacturing process. These stresses are a common source of failure in plastic components in automobiles, appliances and computers and are difficult to measure with conventional residual-stress experimental methods. Real-time holographic interferometry appears to be a viable technique to identify and monitor these stresses in plastic parts. In this investigation, holographic interferometry was used to monitor the relaxation of residual stresses in the plastic-molded actuator arm of a computer hard drive. In the first phase of this study, the relaxation of these residual stresses as a function of temperature was observed. In the second phase, the time to completely relax the residual stresses in the plastic part at an elevated temperature, the annealing temperature, was determined. In the third phase of this investigation, the rate of relaxation of these residual stresses as a function of time at various operating temperatures, was studied. Based on the results of this study, holographic interferometry appears to be a powerful research tool in the study of residual stresses in plastic parts. It also has the potential to be a practical tool for the inspection of manufactured plastic parts for the presence of residual stress.  相似文献   

12.
Comparative analysis of actual fringe patterns, which are induced by combined implementing the hole drilling method and reflection hologram interferometry for residual stresses determination, is presented. Involved considerations are related to plane thin-walled structural elements. A set of interferograms of perfect (ideal) form is selected proceeding from one-side measurements. A base for recognising each specific ideal configuration is a fine coincidence between actual interferograms and analogous reference fringe patterns constructed for the same stress state. Perfect (ideal) both actual and reference fringe patterns are defined as a response of pure membrane 2D stress field on through hole drilling between exposures. Main principles of creating the regular catalogue of reference fringe patterns inherent in through hole drilling in thin-walled components are formulated. Emphasis is made on a careful collecting and classifying actual interferograms with clear indications of bending stress presence in total residual stress field. Evidences needed for a reliable classification of the type of residual stresses field of interest are established and verified. A response of superimposed residual stress field, which consists of both membrane and bending components, is characterised by various deviations of each specific fringe pattern from an ideal form. More deep analysis of fringe patterns related to superimposed residual stress field is based on specially designed technique. The main essence of the approach developed is simultaneous measurements of through hole distortions in two principal strain directions on opposite sides of thin plane specimen. These sides are faces of the drill entrance and exit. Sophisticated optical set-up that is capable of obtaining high-quality fringe patterns in the course of two-side measurements is developed and implemented. Typical set of fringe patterns obtained for single probe hole on opposite specimen faces is presented.  相似文献   

13.
We address the effects of processing parameters on residual stresses and fatigue properties of LY2 Al alloy by laser shock processing (LSP). Results show that compressive residual stresses are generated near the surface of samples due to LSP. The maximum compressive residual stress at the surface by two LSP impacts on one side is higher than that by one LSP impact. The maximum value of tensile residual stress is found at the mid-plane of samples subjected to two-sided LSP. Compared with fatigue lives of samples treated by single-sided LSP, lives of those treated by two-sided LSP are lower. However, these are higher than untreated ones.  相似文献   

14.
An interferometric strain rosette (ISR) technique is extended to residual stress measurements. The ISR technique is based on diffraction and interference of laser light reflected from three micro-indentations depressed in a specimen surface. Three in-plane strain components between the three micro-indentations can be measured simultaneously. Therefore the ISR enables a determination of two normal and one shear strain components. For many applications, the ISR is superior to a resistance strain rosette due to its short gage length and non-contacting nature. By applying an ISR to a material surface, residual stresses at the location of the ISR can be obtained through measurement of residual strains relieved via hole-drilling. Since the gage length can be as short as 50 μm, the ISR is capable of recording high strain gradients and it allows the strains close to the hole to be measured. The size of the hole can be small and precise location is not required. Since the ISR technique is non-contacting, it may be used to measure residual stresses in hostile environments.  相似文献   

15.
水平管气液两相泡状流紊流结构的准三维测量   总被引:2,自引:0,他引:2  
用两个X型热膜探针对内径为35mm的水平管内气液两相泡状流的三维紊流结构进行了准三维测量,得出了沿不同直径的轴向、径向和周向的紊流脉动速度和雷诺应力分布。发现在水平管下部脉动速度和雷诺应力与单相流动时的分布规律相似;在管子上部由于空气泡的存在增强了脉动速度;在某些区域内,周向的脉动值甚至比径向和轴向的相应值还要高。水平气液两相泡状流中雷诺应力-uw不为零,在管子的上部甚至和-uv有相同的量级。给出了由于气泡引起的紊流脉动与总素流脉动比值沿径向的分布。  相似文献   

16.
Measurement of Residual Stresses Using Nanoindentation Method   总被引:1,自引:0,他引:1  
Instrumented indentation, which is also known as nanoindentation or depth-sensing indentation, is increasingly being used to probe the residual stresses of materials including bulk solids, thin films, and coatings. The residual stresses are proved to have significant effects on various nanoindentation parameters such as hardness, loading curve, unloading curve, pile-up amount around indentation, and true contact area. By analyzing these parameters, numerous methods are developed to evaluate the residual stresses of materials in recent years. This article reviews six commonly used models which determine residual stresses from analyzing load-depth curves, as well as indentation fracture technique which is based on the classical fracture mechanics. Emphasis is placed on the principle, application and limitation of each nanoindentation method.  相似文献   

17.
氧分压对HfO2薄膜残余应力的影响及有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用电子束蒸发法制备了单层HfO2膜,控制氧气流量从0 mL/min以步长5 mL/min递增至25 mL/min(标况下)。利用ZYGO干涉仪测量基片镀膜前后的面形变化,代入Stoney公式计算出残余应力,分析了不同氧压下残余应力的变化情况。随着氧压的增大,残余应力由张应力逐渐过渡到压应力,当氧压过大时,压应力减小。因此可以通过改变氧压来控制应力。应力的变化与薄膜的微观结构密切相关,分析了所有样品的X射线衍射图(XRD),发现均为非晶结构。利用Ansys建立基片-薄膜有限元模型,将应力作用下基片的形变与实验结果进行对比,验证所建立的模型,为分析HfO2/SiO2膜堆应力的匹配设计提供参考。  相似文献   

18.
We used electronic speckle pattern interferometry (ESPI) to measure in situ displacement fields nondestructively and with high resolution (10−2 μm) by using the interferometry principle and the phase-shift technique. We measured the depth profile of the residual stress in steel pipe manufactured by thermomechanically controlled processing using a quantitative model, which explains the relationship between residual stress and displacement measured by ESPI in chemical etching. We analyzed the variation of yield stresses measured by the indentation technique and the residual stresses at various depths. The relationship between the residual stresses and the yield stresses was consistent with simulated results and can be used for indirect evaluation of the residual stresses from the yield stresses.  相似文献   

19.
《Composite Interfaces》2013,20(4):379-409
In composites, debonding at the fiber–matrix interface and matrix cracking due to loading or residual stresses can effect the mechanical properties. Here three different architectures — 3-directional orthogonal, 3-directional 8-harness satin weave and 4-directional in-plane multidirectional composites — are investigated and their effective properties are determined for different volume fractions using unit cell modeling with appropriate periodic boundary conditions. A cohesive zone model (CZM) has been used to simulate the interfacial debonding, and an octahedral shear stress failure criterion is used for the matrix cracking. The debonding and matrix cracking have significant effect on the mechanical properties of the composite. As strain increases, debonding increases, which produces a significant reduction in all the moduli of the composite. In the presence of residual stresses, debonding and resulting deterioration in properties occurs at much lower strains. Debonding accompanied with matrix cracking leads to further deterioration in the properties. The interfacial strength has a significant effect on debonding initiation and mechanical properties in the absence of residual stresses, whereas, in the presence of residual stresses, there is no effect on mechanical properties. A comparison of predicted results with experimental results shows that, while the tensile moduli E 11, E 33and shear modulus G 12 match well, the predicted shear modulus G 13 is much lower.  相似文献   

20.
A technique for determination of residual stresses at various distances from the irradiated surface is proposed. It is established for iron and molybdenum that compressive stresses are set up under irradiation by low-energy high-current electron beams and that their values decrease sharply with increasing distance from the surface. The residual stresses are much smaller in absolute magnitude than those operating during irradiation. It is shown that the change in resistance to microplastic deformation on irradiation with low-energy high-current electron beams is governed not only by formation of a gradient dislocation substructure in the surface layer, but also by the residual stresses and the appearance of the Bauschinger effect.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 126–132, March, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号