首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We calculate the baryon asymmetry of the Universe in the standard model of the electroweak theory with CP violation appropriate for simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account the effect of damping rate. We find that the contribution of the b quark can still account for the observed baryon asymmetry to within the theoretical uncertainties of such models.

  相似文献   

2.
We present a new mechanism for generating the baryon asymmetry of the Universe directly in the decay of a singlet scalar field S(r) with a weak scale mass and a high dimensional baryon number-violating coupling. Unlike most currently popular models, this mechanism, which becomes effective after the electroweak phase transition, does not rely on the sphalerons for inducing a nonzero baryon number. CP asymmetry in S(r) decay arises through loop diagrams involving the exchange of W+/- gauge bosons and is suppressed by light quark masses, leading naturally to a value of eta(B) approximately 10(-10). The simplest realization of this idea which uses a six quark DeltaB=2 operator predicts colored scalars accessible to the CERN Large Hadron Collider and neutron-antineutron oscillation within reach of the next-generation experiments.  相似文献   

3.
The smallness of quark masses suppresses the CP violation from the Kobayashi-Maskawa phase to a level that is many orders of magnitude below what is required to explain the observed baryon asymmetry. We point out that if, as a result of time variation in the Yukawa couplings, quark masses were large at the time of the electroweak phase transition, then the Kobayashi-Maskawa mechanism could be the source of the asymmetry. The Froggatt-Nielsen mechanism provides a plausible framework where the Yukawa couplings could all be of order 1 at that time, and settle to their present values before nucleo-synthesis. The problems related to a strong first order electroweak phase transition may also be alleviated in this framework. Our scenario reveals a loophole in the commonly held view that the Kobayashi-Maskawa mechanism cannot be the dominant source of CP violation to play a role in baryogenesis.  相似文献   

4.
Utpal Sarkar 《Pramana》2000,54(1):101-118
Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is generated before the electroweak phase transition, it is possible to discriminate different classes of models of neutrino masses. While see-saw mechanism and the triplet Higgs mechanism are preferred, the Zee-type radiative models and the R-parity breaking models requires additional inputs to generate baryon asymmetry of the universe during the electroweak phase transition.  相似文献   

5.
We consider the presence of cosmic string-induced density fluctuations in the early universe at temperatures below the electroweak phase transition temperature. Resulting temperature fluctuations can restore the electroweak symmetry locally, depending on the amplitude of fluctuations and the background temperature. The symmetry will be spontaneously broken again in a given region as the temperature drops there (for fluctuations with length scales smaller than the horizon), resulting in the production of baryon asymmetry. The time-scale of the transition will be governed by the wavelength of fluctuation and, hence, can be much smaller than the Hubble time. This leads to strong enhancement in the production of baryon asymmetry for a second-order electroweak phase transition as compared to the case when transition happens due to the cooling of the universe via expansion. For a two-Higgs doublet model (with appropriate CP violation), we show that one can get the required baryon asymmetry if fluctuations propagate without getting significantly damped. If fluctuations are damped rapidly, then a volume factor suppresses the baryon production, though it is still 3–4 orders of magnitude larger than the conventional case of second-order transition.  相似文献   

6.
We explore a new possibility of electroweak baryogenesis in the next-to-minimal supersymmetric standard model. In this model, a strong first-order electroweak phase transition can be achieved due to the additional singlet Higgs field. The new impact of its superpartner (singlino) on the baryon asymmetry is investigated by employing the closed-time-path formalism. We find that the CP violating source term fueled by the singlino could be large enough to generate the observed baryon asymmetry of the Universe without any conflicts with the current constraints from the non-observation of the thallium, neutron and mercury electric dipole moments.  相似文献   

7.
The energy levels of the left- and the right-handed neutrinos are split in the background of gravitational waves generated during inflation, which, in presence of lepton-number-violating interactions, gives rise to a net lepton asymmetry at equilibrium. Lepton number violation is achieved by the same dimension five operator which gives rise to neutrino masses after electroweak symmetry breaking. A net baryon asymmetry of the same magnitude can be generated from this lepton asymmetry by electroweak sphaleron processes.  相似文献   

8.
A precise measurement of the strange quark forward-backward asymmetry used 3.2M multihadronic events around the Z peak collected by the DELPHI experiment from 1992 to 1995. The ring imaging Cherenkov detectors in the barrel and end-cap regions identify high energy charged kaons which tag the s quark. The s quark asymmetry was measured at different centre-of-mass energies; in particular at the Z pole taking the expected d and u quark asymmetries from the Standard Model. The quark flavour fractions are assumed from the Standard Model and the fragmentation process is modelled by JETSET. From the s quark pole asymmetry the electroweak mixing angle was determined: The parity violating coupling of the s quark to the Z was determined to be: Received: 8 October 1999 / Revised version: 23 February 2000 / Published online: 18 May 2000  相似文献   

9.
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.  相似文献   

10.
The cosmological baryon asymmetry can be explained by the nonperturbative electroweak reprocessing of a lepton asymmetry generated in the out-of-equilibrium decay of heavy right-handed Majorana neutrinos. We analyze this mechanism in detail in the framework of a SO(10)-subgroup. We take three right-handed neutrinos into account and discuss physical neutrino mass matrices.  相似文献   

11.
Raghavan Rangarajan 《Pramana》1999,53(6):1061-1067
We review various attempts to create the observed baryon asymmetry of the Universe. In particular, we consider models of GUT baryogenesis, baryogenesis via leptogenesis, the Affleck-Dine mechanism, electroweak baryogenesis and baryogenesis via topological defects and primordial black holes.  相似文献   

12.
We study the scale at which one can generate the lepton asymmetry of the universe which could then get converted to a baryon asymmetry during the electroweak phase transition. We consider the possibility that the Yukawa couplings could be arbitrarily small but sufficiently large to generate enough lepton asymmetry. This forbids the possibility of the breaking scale to be less than 10 TeV. Received: 14 April 1998 / Revised version: 8 August 1998 / Published online: 11 February 1999  相似文献   

13.
We propose a group theoretic condition which may be applied to extensions of the Standard Model in order to locate regions of parameter space in which the electroweak phase transition is strongly first order, such that electroweak baryogenesis may be a viable mechanism for generating the baryon asymmetry of the universe. Specifically, we demonstrate that the viable corners of parameter space may be identified by their proximity to an enhanced discrete symmetry point. At this point, the global symmetry group of the theory is extended by a discrete group under which the scalar sector is non-trivially charged, and the discrete symmetry is spontaneously broken such that the discrete symmetry relates degenerate electroweak preserving and breaking vacua. This idea is used to investigate several specific models of the electroweak symmetry breaking sector. The phase transitions identified through this method suggest implications for other relics such as dark matter and gravitational waves.  相似文献   

14.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

15.
The lightest electroweak baryon as a topological object is investigated by using a general effective Lagrangian of composite electroweak symmetry breaking and the spin-independent electroweak baryon-nucleon scattering cross section is calculated. We explicitly show the masses of the electroweak baryons and the cross section as functions of the Peskin-Takeuchi S parameter and the ratio of the masses of axial-vector and vector composite bosons. We find that it is acceptable to regard the electroweak baryon as a dark matter candidate and the even number of technicolor is favored.  相似文献   

16.
最近Diakonov考虑了大Nc平均场近似下重子共振态谱的海夸克效应并提出重子共振态谱的集体激发理论,该理论恰好是SU(6)夸克模型的一种推广。检查了Diakonov重子谱理论中介子张量势的物理含义并给出重子共振态谱公式参数的数值优化。发现,重子共振态谱公式能够与2 Ge V以下重子谱良好吻合。  相似文献   

17.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

18.
《Physics letters. [Part B]》1987,198(3):411-415
The weak phase transition of the hot big bang can produce quarks, leptons and weak bosons which are out of thermal equilibrium. In a simple extension of the standard model it is shown that the reactions following top quark decays can generate the cosmological baryon asymmetry. The top quark mass must be close to 80 GeV and the Higgs boson must be lighter than 1 GeV. This baryogenesis mechanism can be directly tested at e+e and hadron collider by searching for spectacular events containing six or more bottom quarks and a violation of baryon number at the decay vertex of a long lived neutral particle.  相似文献   

19.
The QCD string model for baryons derived by Yu. A. Simonov and used for the calculation of baryon magnetic moments in a previous paper is extended to include also perturbative gluon and meson exchanges. The mass spectrum of the baryon multiplet is studied. For the meson interaction, either pseudoscalar or pseudovector coupling is used. Predictions are compared with the experimental data. Besides these exchanges, the influence of excited quark orbitals on the baryon ground state are considered by performing a multichannel calculation. The nucleon-Δ splitting increases due to the mixing of higher quark states, while the baryon magnetic momenta decrease. The multichannel calculation with perturbative exchanges is shown to yield reasonable magnetic moments, while the mass spectrum is close to experiment.  相似文献   

20.
The electroweak asymmetries (the front-back angular asymmetry, the right-left asymmetry, the degree of longitudinal polarization of a quark, and the degree of circular polarization of a -ray) in the ordinary and radiative annihilation of an electron-positron pair into a pair of heavy quarks are analyzed in the standard Weinberg-Salam model. It is shown that these P-odd asymmetries are quite sensitive to the magnitude of the right-hand coupling constant of a quark.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 23–28, July, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号