首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

2.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

3.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

4.
Пусть ω(δ) - модуль непре рывности,H ω — класс 1-периодических непре рывных функцийf (t), модуль непрерывнос ти которыхω(f, δ)≦ω(δ), и п устьS n (f,x)=S n (f),D n (t), Ln – соответственно ча стичные суммы ряда Фу рье-Уолшаf(t), ядра Дирихле и конст анты Лебега порядкап (п- 1, 2, ...). Доказаны Теорема 1.Для любой не прерывной функции f $$\mathop {\lim \inf }\limits_{k \to \infty } \frac{{\parallel f - S_k (f)\parallel }}{{\omega (f,1/k)L_k }} = 0$$ Теорема 2.Пусть 0n=[nβ]+1 (n=1,2, ...). Пусть, далее, Мn — множество тех k (2nk<2n+1), для которых Тогда в каждом классе $$\int\limits_0^{2^{ - m_n } } {\left| {D_k (t)} \right|dt \geqq AL_k } $$ найдется функция f, т акая, что $$\mathop {\lim \inf }\limits_{k \in \mathop \cup \limits_n M_n } \frac{{\left\| {f - S_k (f)} \right\|}}{{\omega (1/k)L_k }} \geqq B(A) > 0$$   相似文献   

5.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

6.
Let Δ q be the set of functionsf for which theqth difference, is nonnegative on the interval [? 1,1],P n is the set of algebraic polynomials of degree not exceedingn, τ k (f, δ) p is the averaged Sendov-Popov modulus of smoothness in theL p [?1,1] metric for 1≦p≦∞, ω k (f, δ) and $\omega _\phi ^k (f,\delta ),\phi (x): = \sqrt {1 - x^2 } ,$ , are the usual modulus and the Ditzian-Totik modulus of smoothness in the uniform metric, respectively. For a functionfC[?1,1]?Δ2 we construct a polynomialp n P n 2 such that $$\begin{gathered} \left| {f(x) - p_n (x)} \right| \leqslant C\omega _3 (f,n^{ - 1} \sqrt {1 - x^2 } + n^{ - 2} ),x \in [ - 1,1]; \hfill \\ \left\| {f - p_n } \right\|_\infty \leqslant C\omega _\phi ^3 (f,n^{ - 1} ); \hfill \\ \left\| {f - p_n } \right\|_p \leqslant C\tau _3 (f,n^{ - 1} )_p . \hfill \\ \end{gathered}$$ As a consequence, for a functionfC 2[?1,1]?Δ3 a polynomialp n * P n 3 exists such that $$\left\| {f - p_n^* } \right\|_\infty \leqslant Cn^{ - 1} \omega _2 (f\prime ,n^{ - 1} ),$$ wheren≥2 andC is an absolute constant.  相似文献   

7.
It is the aim of this paper to introduce two new notions of discrepancy. They are defined by the formulas $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z e^2 \pi i\omega \left( n \right)} \right)} - f\left( 0 \right)} \right|, and \hfill \\ \delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z \omega \left( n \right)} \right)} \cdot z - \int\limits_0^z {f\left( \zeta \right)d\zeta } } \right|, \hfill \\ \end{gathered} $$ wheref is a holomorphic function defined in the unit disc withf (k) (0)≠0 for allk∈?,r<1 is a positive number, and ω is a sequence in [0, 1]. The first of these discrepancies can be generalized for multidimensional sequences. ω is uniform distributed if and only if lim N→∞ Δ N r (ω;f)=0 resp. lim N→∞δ N r (ω;f)=0. These results are proved in a quantitative way by estimating the classical discrepancyD N (ω) by means ofΔ N r (ω;f) and δ N r (ω;f): $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Phi \left( {\Delta _N^r \left( {\omega ;f} \right)} \right), \hfill \\ \delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Psi \left( {\delta _N^r \left( {\omega ;f} \right)} \right). \hfill \\ \end{gathered} $$ The functions Φ and Ψ only depend onf andr. These estimations are based on the inequalities ofKoksma-Hlawka andErdös-Turán.  相似文献   

8.
Пусть?(x) — ограниченн ая функция на отрезке [0,1] и ее функция распределен ияΦ(t) удовлетворяет услов ию $$\Phi \left( t \right) + \Phi \left( { - t} \right) = 1.$$ Еслиf(x) — конечная поч ти всюду функция, то дл яF n (t) — функции распределе ния произведенияf(x)?(nx) — вы полнены соотношения и В частности, еслиf(x) — и нтегрируемая функци я, то из (1) следует, что $$\mathop {\lim }\limits_{n \to \infty } \mathop \smallint \limits_0^1 f\left( x \right)\varphi \left( {nx} \right)dx = 0 $$   相似文献   

9.
10.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

11.
We prove the following theorem: Suppose the function f(x) belongs toL q (ω, ? n ), ω ? ? m , q∈(1, ∞), and satisfies the inequality $$|\int\limits_\omega {(f(x),{\mathbf{ }}v(x)){\mathbf{ }}dx| \leqslant \mu ||} v||'_q ,{\mathbf{ }}\tfrac{1}{q} + \tfrac{1}{{q'}} = 1,$$ for all n-dimensional vector-valued functions in the kernel of a scalar-valued first-order differential operator £ for which the second-order operatorLL * is elliptic. Then there exists a function p(x)∈W q 1 (ω) such that $$||f(x) - \mathfrak{L}^* p(x)||q \leqslant C_q \mu .$$ Bibliography: 6 titles.  相似文献   

12.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

13.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

14.
Iff∈C[?1, 1] is real-valued, letE R mn (f) andE C mn (f) be the errors in best approximation tof in the supremum norm by rational functions of type (m, n) with real and complex coefficients, respectively. We show that formn?1≥0 $$\gamma _{mn} = \inf \{ {{E_{mn}^C (f)} \mathord{\left/ {\vphantom {{E_{mn}^C (f)} {E_{mn}^R (f)}}} \right. \kern-\nulldelimiterspace} {E_{mn}^R (f)}}:f \in C[ - 1,1]\} = \tfrac{1}{2}.$$   相似文献   

15.
Пусть {f n } n=1 — после довательность измер имых функций, а {ω(n)} n=1 — неу бывающая последовательность положительных чисел. Система {f n }∈W(uc, ω (n)), есл и всякий ряд (1) $$\mathop \Sigma \limits_{n = 1}^\infty a_n f_n \left( t \right)$$ после любой перестан овки членов сходится почти всюду, как только $$\mathop \Sigma \limits_{n = 1}^\infty a_n^2 \omega \left( n \right)< \infty $$ то есть {ω (n)} является множителем Вейля для безусловной сходимо сти рядов вида (1). Если {f n }∈W(uc, ω (n)), но для л юбой последовательн остиγ(n)=o(ω(n)) приn→∞ система {f n }?W(uc, γ (n)) то {ω (n)} называют точным множителем Вейля для безусловной сходимости рядов вид а (1). Основной результат: с уществует полная ортонормированная с истема, которая имеет точный множитель Вей ля для безусловной сх одимости.  相似文献   

16.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

17.
The following inequalities are shown to hold for the least uniform rational deviations Rn(f) of a function f(x), continuous and convex in the interval [a, b]: $$R_n (f) \leqslant C(v)\Omega (f)n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n$$ (ν is an integer, C(ν) depends only on ν, and Ω(f) is the total oscillation of f); $$R_n (f) \leqslant C_1 n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n\mathop {\inf }\limits_{(b - a)\chi _n \leqslant \lambda< b - a} \left\{ {\omega (\lambda ,f) + M(f)n^{ - 1} \ln \frac{{b - a}}{\lambda }} \right\}$$ (ν is an integer, C1(ν) depends only on ν, xn = exp (-n/(500 In2n)), ω (δ,f) is the modulus of continuity of f, and M(f) = max¦f(x) ¦.  相似文献   

18.
The paper deals with the order of best rational approximation of some classes of functions, depending on their differentiability properties. Improvements and generalizations of some results by P. P. Petrushev, V. A. Popov and the author are obtained. The proofs are based on the author's direct rational approximation theorems received recently. One of the results reads as follows. LetR n (f,L p ) denote the value of the best approximation of a functionf inL p ,f∈L p [0,1], by rational fractions of degree not exceedingn, n≧1. Suppose that 0<p≦∞,s∈NU{0}, andp≠∞ fors=0. Iff is thes-th primitive of some function of bounded variation on [0,1], then $$\sum\limits_{n = 1}^\infty {\frac{1}{n}(n^{s + 1} R_n (f,L_p ))^2< \infty } $$ . This statement is exact. Namely, for everys, s∈NU {0}, and every sequence {a n } n=1 , $$a_n \geqq a_{n + 1} and \sum n^{ - 1} (n^{s + 1} a_n )^2< \infty ,$$ , there exists a functiong of the classC s+1 [0,1] satisfying the inequalities $$R_n (g, L_p ) \geqq c(p)a_{12} , n = 1, 2, \ldots ,$$ , for everyp, p∈(0, ∞).  相似文献   

19.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

20.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号