首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is demonstrated to be a potentially useful tool for the rapid identification of yeasts, the grouping of Candida albicans strains, and the monitoring of germ tube-specific markers. Co-crystallized with sinapinic acid as the MALDI matrix, intact yeast cells yielded a sufficient number of medium-sized ions (4–15 kDa) in MALDI mass spectra to provide “mass signatures” that were diagnostic of strain type. For most isolates, the mass signatures were affected by the growth medium, length of incubation and the cell preparation method. While the overall past success of this methodology for fungal cells has been relatively low compared to its application to bacteria, fixing the yeast cells in 50% methanol inactivated the cells, reduced cell aggregation in aqueous suspension solution, and more importantly, it significantly improved the mass signature quality. This simple but critical advance in sample treatment improved mass spectrometric signal-to-noise ratios and allowed the identification of yeasts by a mass signature approach. Under optimized conditions, Candida species (C. albicans, C. glabrata, C. krusei, C. kefyr), Aspergillus species (A. terreus, A. fumigatus, A. syndowii) and other yeast genera (Cryptococcus neoformans, Saccharomyces cerevisiae and a Rhodotorula sp.) could be distinguished. Within the C. albicans species, several common ions in the m/z 5,000–10,000 range were apparent in the mass spectra of all tested strains. In addition to shared ions, the mass spectra of individual C. albicans strains permitted grouping of the strains. Principal component analysis (PCA) was employed to confirm spectral reproducibility and C. albicans strain grouping by mass signatures. Finally, C. albicans germ tubes produced MALDI-TOF mass signatures that differed from yeast forms of this species. This is a rapid, sensitive and simple method for identifying yeasts, grouping strains and following the morphogenesis of C. albicans. Figure    相似文献   

2.
Unambiguous identification of mycotoxin‐producing fungal species as Fusarium is of great relevance to agriculture and the food‐producing industry as well as in medicine. Protein profiles of intact fungal spores, such as Penicillium, Aspergillus and Trichoderma, derived from matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) were shown to provide a rapid and straightforward method for species identification and characterization. In this study, we applied this approach to five different Fusarium spp. strains which are known to affect the growth of different grain plants. To obtain a suitable MALDI matrix system and sample preparation method, thin‐layer, dried‐droplet and sandwich methods and several MALDI matrices, namely CHCA, DHB, FA, SA and THAP dissolved in various solvent mixtures (organic solvents such as ACN, MeOH, EtOH and iPrOH and for the aqueous phase water and 0.1% TFA), were evaluated in terms of mass spectrometric pattern and signal intensities. The most significant peptide/protein profiles were obtained with 10 mg ferulic acid (FA) in 1 mL ACN/0.1% TFA (7:3, v/v) used as matrix system. Mixing the spores with the matrix solution directly on the MALDI target (dried‐droplet technique) resulted in an evenly distributed spores/matrix crystal layer, yielding highly reproducible peptide/protein profiles from the spore surfaces. Numerous abundant ions throughout the investigated m/z range (m/z 1500–15 000) could be detected. Differences in the obtained mass spectral patterns allowed the differentiation of spores of various Fusarium species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of novel metal-free and zinc phthalocyanines with four 3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin dye groups on the periphery were prepared by cyclotetramerization of a novel 3-[(2-diethylamino)ethyl]-7-[(3,4-dicyanophenoxy)]-4-methylcoumarin. The novel chromogenic compounds were characterized by elemental analysis, 1H NMR, 13C NMR, MALDI-TOF, IR and UV–Vis spectral data. The electronic spectra exhibit bands of coumarin identity along with characteristic Q and B bands of the phthalocyanine (Pc) core. The IR spectra of all the Pcs showed three characteristic intense bands, at 1704 cm−1 for the lactone carbonyl and two bands at 1489–1604 cm−1 for the conjugated olefinic system.  相似文献   

4.
Phthalocyanines (Pc), which are peripherally substituted with pyridin-3-yloxy groups, have shown promise as sensitizers for photodynamic cancer therapy (PDT). Some aza-analogues (AzaPc) are reported here. Four monomers were synthesized, i.e. 5,6-di(pyridin-3-yloxy)pyrazine-2,3-dicarbonitrile, and three pyrazine-2,3-dicarbonitriles, substituted with pyridin-3-yloxy- in combination with H, Me and Ph groups. Cyclotetramerizations of these monomers with the reagent Zn(quinoline)2Cl2 yielded the targeted ZnAzaPcs in 20–40% yields.The cyclotetramerizations were accompanied, and apparently initiated, by complexation between zinc(II) and the pyridin-3-yloxy groups attached to the pyrazine-dicarbonitriles. Two such zinc(II) complexes were isolated and characterized. Identifications of all new substances were primarily based on NMR spectra, where the pulse techniques COSY, NOESY, HSQC and HMBC were applied. Molecular ions of the ZnAzaPcs were determined by mass spectrometry (MALDI-TOF). The UV–Vis spectra of these macrocycles were as expected, with Q-band absorptions at 630–650 nm and molar extinction coefficients, ε, 70 000–100 000. Eight peripheral pyridin-3-yloxy groups induced a small blue shift of the Q-band, from 636 nm for unsubstituted ZnAzaPc, to 630 nm, whereas a red shifted Q-band at 650 nm resulted from the combination of phenyl and pyridin-3-yloxy substituents. Improved solubilities were observed for the unsymmetrical ZnAzaPcs compared to octa(pyridin-3-yloxy)ZnAzaPc.  相似文献   

5.
The synthesis of novel phthalonitriles substituted at 3- or 4-position with 6,7-dihexyloxy-3-(4-oxyphenyl)coumarin were performed. The metal-free and metallo phthalocyanines (MPcs) (M = Zn, Co, Cu) were prepared by cyclotetramerization of 6,7-dihexyloxy-3-[p-(2′,3′-dicyanophenoxy)phenyl]coumarin or 6,7-dihexyloxy-3-[p-(3′,4′-dicyanophenoxy)phenyl]coumarin. The newly prepared compounds, phthalonitriles and Pcs, have been characterized by elemental analysis, 1H NMR, 13C NMR, MALDI-TOF, IR, UV–Vis and fluorescence spectral data. The electronic spectra exhibit bands of coumarin identity along with characteristic Q and B bands of the Pc core. The IR-spectra of all Pcs showed three characteristic intense bands at 1709–1700 cm−1 for lactone carbonyl, two bands at 1489–1604 cm−1 for conjugated olefinic system.  相似文献   

6.
Summary Californium-252 plasma desorption mass spectra were recorded for complexes of the anions of various thio-and seleno-semicarbazones of 3-acetylpyridines(1–4) with the transition metal ions iron(III) and cobalt(II). Positive ion spectra gave clear evidence of the cation present and fragmentation with loss of ligands or parts of ligands was straightforward. Negative ion spectra likewise provided evidence of the intact anion except with tetracoordinate metal halide systems [MX4] which lost one or more halide atoms. Evidence of fragmentation of the ligand and recombination of the fragments with the metal ion was also observed in the negative ion mode. Spectra were used to revise the structure of a complex previously reported as [FeLCl2](1) to [FeL2]+[FeCl4].  相似文献   

7.
Investigations of the lowest Σ-bending vibrations of Ar–DBr (v = 0) and Ar–HBr (v = 1) are reported using a co-axially configured submillimeter supersonic jet spectrometer. The v = 1 spectra were obtained using glow discharge excitation. Analyses of hyperfine substructure in these spectra provide accurate molecular parameters for Ar–DBr and Ar–BrD isomeric states, direct determination of their corresponding isomerization energies, and respective parameters in the v = 1 HBr stretching vibration of the Ar–HBr isotopomer. This experimental data provides a sensitive probe of the relative energies of potential minima for previously determined 3-D Ar–HBr morphed potential and compared with results from extrapolations to the CCSD(T)/CBS limit.  相似文献   

8.
The intact fungal spores of several strains of four Aspergillus species, Aspergillus flavus, A. oryzae, A. parasiticus, and A. sojae, were directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Very simple MALDI mass spectra are obtained by directly mixing spores with a matrix such as alpha-cyano-4-hydroxycinnamic acid or sinapinic acid. The mass spectra are obtained from the ablation of cell walls of spores owing to the acidity of the matrix solution. The MALDI results show that aflatoxigenic strains and non-aflatoxigenic strains have different mass peak profiles. Furthermore, the MALDI results of non-aflatoxigenic A. flavus and A. parasiticus spores resemble those of the closely related A. oryzae and A. sojae spores, respectively.  相似文献   

9.
EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)–Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)–O–Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic CO bonds.  相似文献   

10.
Complete active space self-consistent-field (CASSCF) approach has been used for the geometry optimization of the X2Σ+ and A2Π electronic states for the linear magnesium-containing carbon chains MgC2nH (n = 1–5). Multireference second-order perturbation theory (CASPT2) has been used to calculate the vertical excitation energies from the ground to selected seven excited states, as well as the potential energy curves of two 2Σ+ and two 2Π electronic states. The studies indicate that the vertical excitation energies of the A2Π ← X2Σ+ transition for MgC2nH (n = 1–5) are 2.837, 2.793, 2.767, 2.714, and 2.669 eV, respectively, showing remarkable linear size dependence. Compared with the previous TD-DFT and RCCSD(T) results, our estimates for MgC2nH (n = 1–3) are in the best agreement with the available observed data of 2.83, 2.78, and 2.74 eV, respectively. In addition, the dissociation energies in MgC2nH (n = 1–5) are also been evaluated.  相似文献   

11.
Synchrotron FTIR can provide high spatial resolution (<10 μm pixel size) in situ biochemical analyses of intact biotissues, an area of increasing importance in the post-genomic era, as gene functions and gene networks are coming under direct scrutiny. With this technique, we can simultaneously assess multiple aspects of cell biochemistry and cytoplasmic composition. In this paper, we report the first results of our synchrotron FTIR examination of hyphae of three important fungal model systems, each with sequenced genomes and a wealth of research: Aspergillus, Neurospora, and Rhizopus. We have analyzed the FTIR maps of Aspergillus nidulans cells containing the hypA1 allele, a well-characterized single-gene temperature-sensitive morphogenetic mutation. The hypA1 cells resemble wildtype at 28 °C but have growth defects at 42 °C. We have also investigated Neurospora and Rhizopus cultures grown in media with optimal or elevated pH. Significant differences between the spectra of the three fungi are likely related to differences in composition and structure. In addition, high spatial resolution synchrotron FTIR spectroscopy provides an outstanding method for monitoring subtle subcellular changes that accompany environmental stress. Figure Photomicrographs and FTIR spectra acquired along Rhizopus hyphae grown at pH 6.5 (a) and pH 8.5 (b). Scale bars 50 μm  相似文献   

12.
The electronic UV–VIS–NIR absorption spectra of single crystalline BaTiO3−δ (BTO) are studied in the temperature range of 102–1173 K in pure oxygen and at conditions of moderate and strong reduction of the material. The strongly reduced crystals are of deep blue colour. The optical spectra of blue BTO are characterised by a strong absorption in the NIR region at around 7000 cm−1, which is attributed to polaronic defects associated with the formation of Ti3+ in the material. This assumption is supported by fits of the spectra using polaronic line shape functions appropriate for disordered systems and also by the electrical conductivity of blue BTO which, in agreement with results from the optical spectra, exhibits an activation energy of 0.20 eV. The EPR spectra of moderately reduced BTO powders show an anisotropic g-factor, which is compatible with the optical spectrum. The temperature dependence of the band gap energy of BTO was found to be given as dEg/dT = −7.21 × 10−4 eV/K.  相似文献   

13.
The infrared (3200–30 cm–1) spectra of gaseous and solid Cyclopropyldifluorosilane, c-C3H5SiF2H, and the Raman spectra (3200–20 cm–1) of the liquid with quantitative depolarization values and the solid have been recorded. Both the syn (cis) and skew (gauche) conformers have been identified in the fluid phases, but only the syn conformer remains in the solid. Variable temperature (–55 to –100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 73 ± 10 cm–1 (209 ± 29 cal mol–1), with the syn conformer being the more stable rotamer, which is at variance with the predictions from ab initio calculations. A complete vibrational assignment is proposed for both conformers based on infared band contours, relative intensities, depolarization values, and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G* calculations. Utilizing the frequencies of the silicon–hydrogen sketch, the rm Si—H bond distances of 1.474 and 1.472 Å have been obtained for the syn and skew conformers, respectively. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311 +G** basis sets at levels of restricted Hartree-Fock (RHF) and/or Moller–Plesset (MP) to second order. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G* calculation. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

14.
Guirgis  Gamil A.  Pan  Chunhua  Shen  Shiyu  Durig  James R. 《Structural chemistry》2001,12(6):445-458
The Raman spectra (3200–30 cm–1) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl chloride, ClCH2SiH2Cl, have been recorded. Variable temperature (–105––150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference is 177 ± 35 cm–1 (2.12 ± 0.42 kJ/mol), with the more stable form being the trans conformer, which is consistent with the prediction from ab initio calculations at both the Hartree–Fock level and with electron correlation by the perturbation method to second order. It is estimated that 56% of the sample is in the trans form at ambient temperature. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   

15.
The infrared, Raman, and inelastic neutron scattering (INS) spectra of two ortho-hydroxy aryl Schiff’s bases, 2-(N-methyliminoethyl)-phenol and 2-(N-methyl-α-iminoethyl)-phenol, were recorded. Ab initio molecular orbital calculations employing the DFT (B3LYP) method with the 6-31G** basis set for both compounds were done. Assignments of vibrational modes within the 3500–50 cm−1 spectral region were carried out. On the basis of the DFT calculations, four rotomers of 2-(N-methyl-α-iminoethyl)-phenol were analysed.  相似文献   

16.
Mass spectrometry has been shown in recent years to be a powerful tool to determine accurate molecular masses and sequences of peptides and proteins and post-translational modifications such as glycosylation, phosphorylation, and sulfation. For glycosylation, it has been increasingly recognized to be of pivotal importance to identify whether potential glycosylation sites are actually modified by glycans, because functions of proteins may be modulated or depend on the presence of glycans at specific sites. Several recent reports have established that mass spectrometric techniques such as matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry (MALDI-TOF or ESI-MS, respectively) with or without preceding HPLC and in combination with PNGase F treatment are suited to analyze whether consensus sequences for N-glycosylation are glycosylated or not. Here we report the mass spectrometric analysis of the six potential N-glycosylation sites of the neural cell adhesion molecule NCAM from adult mouse brain. Unmodified peptides and glycopeptides each carrying a single glycosylation site were generated from NCAM by AspN and trypsin treatment and submitted to reversed-phase HPLC with or without prior enzymatic release of N-glycans. The resulting peptides were analyzed by MALDI-TOF-MS. In addition, high-resolution Fourier transform–ion cyclotron resonance (MALDI-FTICR) mass spectrometry was performed after in-gel deglycosylation and subsequent trypsin digestion. By using these procedures all six consensus sequences were shown to be glycosylated; the observation of an unmodified peptide with the consensus sequence N-1 indicates only partial glycosylation at this site.Abbreviations amu atomic mass units - AspN endoproteinase AspN - CAM cell adhesion molecule - ESI electrospray ionization - FTICR Fourier transform–ion cyclotron resonance - IgSF immunoglobulin superfamily - MALDI-TOF matrix-assisted laser desorption ionization–time of flight - MS mass spectrometry - NCAM neural cell adhesion molecule - PNGase F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase - PSA polysialic acid - TFA trifluoroacetic acid  相似文献   

17.
We report on experiments with Aun nanoparticles (100 ≤ n ≤ 400) at velocities of 10–60 km/s. They are implanted virtually intact via hydrodynamic penetration. The products of the extreme pressure transient are observed by mass analyzing the ionized ejecta. Targets of labeled molecules (13C-, 15N-glycine) reveal fragmentation–recombination processes, producing CN and OCN with high efficiency (45%). This value is over two orders of magnitude larger than that obtained with atomic and small cluster projectiles. The experiments could simulate collisions of nanosized dust particles in interstellar space.  相似文献   

18.
A pair of pseudoenantiomers, anilide derivatives of N-pivaloylproline were prepared and used as chiral selectors for enantiomer discrimination of amides or esters of N-(3,5-dinitrobenzoyl)amino acids in single-stage electrospray ionization/mass spectrometric experiments. Addition of a chiral analyte to a solution of the two pseudoenantiomeric chiral selectors affords selector–analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector–analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of the measured enantioselectivity and for quantitative enantiomeric composition determinations. Effects of the added cationic ions (H+, Li+, Na+ and K+) and instrument conditions on the selector–analyte ion intensity and the enantioselectivity (αMS) were investigated. The percent ratio of the sum of the selector–analyte ion counts and the total ion counts decreases accordingly with the increase of the desolvation temperature for H+, Na+ and K+. The ratio for Li+ kept almost constant. The best αMS was observed at a desolvation temperature of 200 °C with the added H+. The cone voltage has little effects on the αMS values though the intensities of selector–analyte complexes are decreased at higher cone voltages. The observed MS enantioselectivities are comparable to the HPLC enantioselectivities and the sense of chiral recognition by MS is consistent with what is observed chromatographically. Quantitative enantiomeric composition determinations for five different samples of N-(3,5-dinitrobenzoyl)leucinyl butylamide at four different concentrations were performed. The average % difference between the HPLC and MS enantiomer determinations is 6.8% and 3.7% for the calibration lines constructed at a concentration of the analyte of 125 μM and 12.5 μM, respectively.  相似文献   

19.
The fungal spores of Penicillium expansum, P. chrysogenum, P. citrinum, P. digitatum, P. italicum, and P. pinophilum were characterized by using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOFMS). These fungal spores are frequently found in grain and fruit. The mass spectra of these six species were directly obtained from the intact spores without any pretreatment. The results obtained indicate that 2,5-dihydroxybenzoic acid and sinapinic acid are suitable matrices for the analysis of Penicillium spores. Characteristic ions representing the different species were obtained with sufficiently high reproducibility that these ions can be employed to identify the different fungal species. On the basis of these characteristic ions obtained from these authentic Penicillium spores, the approach was applied to characterize the fungal species contaminating the surfaces of fruit. It was demonstrated that the fungal spores directly scratched from the surfaces of fruit contaminated by unknown fungi can be rapidly identified using MALDI-TOFMS analysis without any tedious pretreatment.  相似文献   

20.
The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1–10 μM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10−5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号