共查询到12条相似文献,搜索用时 62 毫秒
1.
以复杂结构受击振动响应的时域计算为目的, 讨论了结构阻尼的计算方法, 给出一种用于冲击声合成的综合数值方法, 并进行了实验验证. 首先, 考虑到阻尼是影响瞬态振动时变特性的重要因素, 详细讨论了两种模态阻尼的计算方法; 其次, 对阻尼板的受击振动和声辐射进行了时域仿真, 并与时域有限差分法的计算结果进行对比, 显示出两种声音合成方法的计算结果具有高度的一致性; 最后, 针对有限长圆柱壳的受击振动, 将合成声与实验录音进行了对比研究. 结果表明, 合成声与实际录音的时域包络、频谱结构以及衰减趋势基本一致, 证明了采用数值方法进行冲击声合成的有效性.
关键词:
声音合成
模态阻尼
冲击声
数值方法 相似文献
2.
分析了二维光子晶体马赫-曾德尔干涉仪的传输特性,将二维光子晶体波导、环形腔和马赫-曾德尔干涉仪有效结合,提出了一种基于二维光子晶体马赫-曾德尔干涉仪的异或门设计。用平面波展开法分析二维光子晶体能带结构,并用时域有限差分法验证光信号在该器件中的电场稳态分布。结果表明,该结构能够实现异或逻辑,且具有高逻辑对比度7.88 dB,快速响应周期0.388 ps和高传输速率7.87 Tbit/s;并且该器件结构尺寸仅为13 μm×14 μm,易于集成。该异或逻辑结构中引入了二维光子晶体马赫-曾德尔干涉仪,使得光子晶体逻辑门结构的设计更加多样,并为二维光子晶体半加器与全加器的设计提供了基础,具有重要的研究意义。 相似文献
3.
A time-domain formulation for the flexural vibrations in damped rectangular isotropic and orthotropic plates is developed, in order to investigate transient excitation of plates by means of sound synthesis. The model includes three basic mechanisms of damping (thermoelasticity, viscoelasticity and radiation) using a general differential operator. The four rigidity factors of the plate are modified by perturbation terms, each term corresponding to one specific damping mechanism. The first damping term is derived from the coupling between the thermoelastic stress-strain relations and the heat diffusion equation. The second term is obtained from the general differential formulation of viscoelasticity. The third term is obtained through a Pade approximation of the damping factor which governs the coupling of the plate with the surrounding air. The decay factors predicted by the model reproduce adequately the dependence on both dimensions and frequency of the decay factors measured on rectangular plates of various sizes and thicknesses made of four different materials (aluminum, glass, carbon fiber, and wood). The numerical resolution of the complete problem, including initial and boundary conditions, and the comparison between real and simulated sounds are presented in a companion paper. 相似文献
4.
Lambourg C Chaigne A Matignon D 《The Journal of the Acoustical Society of America》2001,109(4):1433-1447
A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity. 相似文献
5.
A physical model based on the sound production mechanism of the sho is proposed with intention of applying it to sound synthesis. Time-domain simulation was done using this model, and effects of the tube length and blowing pressure on the sounding frequency and sounds spectra were investigated. The reed vibration, pressure variation inside the tube, and threshold blowing pressure for oscillation were measured by artificially blowing air into the sho. The experimental results are in acceptable agreement with simulation results in terms of the relationships between tube length and threshold pressure and between tube length and the sounding frequency. In addition, recorded sound waveforms and simulated ones have a common feature in the sense that high-frequency components of their spectra increase with increasing blowing pressure. Further, it is concluded that a sho reed acts as an "outward-striking valve." 相似文献
6.
7.
This study combines physical and subjective approaches to evaluate the sound quality of impacted plates. A numerical model, based on the Hertz law of contact, has been used to determine the sound pressure level at any point in space resulting from an impact. Sounds synthesized using this model and those from experiments can then be exploited in a physical analysis and/or a subjective analysis of the effects associated with variations in parameters. Here the influence of certain physical parameters on the sound perception of impacted plates is evaluated through a design of experiments method and a subjective test of preference. The subjective test is based on an estimate of preference between two pairs of synthetic sounds by varying several structural parameters at the same time. This differs from other studies that vary only one parameter at a time and fix the other parameters. 相似文献
8.
9.
A flow model in combination with a statistical-dynamical turbulence generator and a linearised Euler time-domain model for sound waves were used to simulate the effect of screen-induced turbulence on the noise level in the acoustical shadow of a screen in wind. Instead of simulating a great number of different frozen turbulence realisations, the concept of transient turbulence was successfully tested and applied. This concept is adequate to the time-domain model and reduces the computational demands. Several two-dimensional simulations allowed to isolate the individual effects of wind and screen on the propagation of 500 Hz sound waves over a 4-m high noise barrier. At a distance of 250 m from the source (240 m behind the screen) the sheltering effect of the screen and the refraction effect of the wind are in the order of 6 and 4 dB, respectively. The screen-induced turbulence leads to fluctuations in the noise level with a standard deviation of 1.2 dB and a maximum amplitude of 3 dB. However, the time averaged effect turned out to be in the order of merely 0.2 dB. The effect of the screen-induced turbulence on the average noise level behind the screen is therefore negligible. 相似文献
10.
Analysis for the transient response of a simply supported three layer viscoelastically damped sandwich plate, subjected to a half sine shock pulse, has been carried out, with account taken of the transverse inertia effects only. The properties of the viscoelastic core material have been represented by those of a four element viscoelastic model. The influences of the variation of various geometrical and physical parameters of the damped sandwich plate on the shock response are investigated. The decay rate of the transverse vibrations of the plate is evaluated in terms of the logarithmic decrement. 相似文献
11.
Bilbao S 《The Journal of the Acoustical Society of America》2012,131(1):914-925
The snare drum is a complex system, relying on the interaction of multiple components: the drumheads, or membranes, a set of snares, the surrounding acoustic field and an internal cavity. Because these components are multidimensional, and due to a strong distributed non-linearity (the snare interaction), many techniques used frequently in physical modeling synthesis applications, such as digital waveguides and modal methods are difficult to apply. In this article, finite difference time domain techniques are applied to a full 3D system, and various features of interest, such as the coupling between membranes, and the interaction between the membranes and the snares, are examined in detail. Also discussed are various numerical features, such as spurious splitting of degenerate modes and bandwidth limitation, and estimates of computational complexity are provided. Sound examples are presented. 相似文献
12.
Haiyu Zhao 《Journal of sound and vibration》2007,302(3):564-576
This paper proves the stability of boundary and distributed damped membranes and Kirchhoff plates under distributed inputs. Distributed viscous or Kelvin-Voigt damping ensures a weakly bounded response to a bounded transverse loading for pinned membranes and clamped plates. Damping on part of the boundary can also weakly stabilize the forced response, provided the damped and undamped boundary normals satisfy certain conditions. For example, damping on half and one side of the boundary is sufficient for circular and rectangular domains, respectively. 相似文献