首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and synthesis of gem-difluorinated sugar nucleosides were described. The key intermediate, 3-deoxy-3,3-difluoro-d-arabinofuranose 9, was first stereoselectively prepared from the chiral gem-difluorohomoallyl alcohol 12. The kinetic formation of single anti-14 in the benzylation of 12 could be accomplished by controlling the amount of sodium hydride used. The dihydroxylation of 14 (a mixture of anti and syn isomers) followed by deprotection and oxidation stereoselectively afforded furanose 9 with the arabino configuration at the C2 position. N(1)-(3-Deoxy-3,3-difluoro-beta-D-arabinofuranosyl)cytosine 6 was prepared from 9 by the glycosylation reaction. 4'-Thiofuranose 25 was easily synthesized from 9. The oxidation of 25 followed by the condensation with silylated N(4)-benzoylcytosine (Pummerer reaction) failed to give our desired protected nucleoside l-3'-deoxy-3',3'-difluoro- 4'-thiocytidine 27', but the regioisomer 27 was obtained. The regiochemistry of the Pummerer reaction was determined by the kinetic acidity of the alpha-proton of 4'-thiofuranose 25.  相似文献   

2.
An efficient procedure has been developed for the synthesis of 3'-fluoro-2',3'-dideoxy-2',3'-didehydro-4'-ethynyl D- and L-furanosyl nucleosides (1 and 2) starting from 2,3-O-isopropylidene-d-glyceraldehyde. The key intermediate 1-O-benzoyl-3E-fluoro-3,4-unsaturated-5,6-di(tert-butyldimethylsilyloxy)-2-hexanone 8 was obtained in nine steps with the overall yield of 22%. The alpha,beta-unsaturated ketone 8 was then treated with ethynylmagnesium bromide in a typical Grignard reaction procedure to afford the two intermediates 9 and 10, which after deprotection, oxidation, and acetylation gave the corresponding 4-ethynyl-substituted D- and L-sugar moieties 15 and 16, respectively. A series of D- and L-pyrimidine and purine nucleosides were prepared by the coupling of the sugar moieties with various silylprotected bases. The anomeric mixtures were obtained after condensation. After separation, the beta-isomers were further deprotected to yield the target nucleosides. All the newly synthesized 4'-substituted nucleosides were tested for their activities against HIV, among which the D-adenine derivative showed moderate anti-HIV activity (EC(50) = 25.1 microM) without significant cytotoxicity.  相似文献   

3.
A high-throughput phosphoramidite method for HepDirect prodrug synthesis was optimized on seven representative nucleosides, adenosine, inosine, guanosine, uridine, cytidine, AICA-riboside, and thymidine, each on a 5 mg scale. The variables optimized included (1) reaction time, (2) reaction temperature, (3) activating agent, (4) solvent, (5) purification method, and (6) stoichiometry. Preparative HPLC with mass-based fraction collection and yield determination from an ELSD standard curve enabled high-throughput. The optimized conditions for the representative nucleosides required 6 mol equiv of phosphoramidite to nucleoside and resulted in an average HPLC determined yield of 31 +/- 14% and HPLC purity of 93 +/- 3%.  相似文献   

4.
焦献云  乔梁  王孝伟  毛建民  蔡孟深 《化学学报》1993,51(10):1010-1015
1-(2, 3, 4, 6-O-四苄基吡喃糖基)-三氟乙酸酯或三氯乙酸酯在无水四氯化锡存在下与一些具有代表性的硅醚保护的碱基或者含氮杂环化合物反应, 合成了一系列新的苄基糖苷。对三氟乙酰氧基、三氯乙酰氧基作为新的离去基在核苷合成中的反应活性、立体选择性和反应收率进行了讨论。  相似文献   

5.
2'-Deoxy-2'-C-trifluoromethyl-beta-D-ribonucleoside derivatives bearing the five naturally occurring acid bases have been synthesized. All these derivatives were prepared by glycosylation reactions of purine and pyrimidine bases with a suitable peracylated 2-deoxy-2-C-trifluoromethyl sugar precursor to afford anomeric mixtures of protected nucleosides. After separation and deprotection, the resulting beta-nucleoside analogues were tested for their activity against HIV, HBV and several RNA viruses. However, none of these compounds showed significant antiviral activity nor cytotoxicity.  相似文献   

6.
Synthesis of Sulfolenobilins and Their Cyclization Directed to Chlorinatozinc‐Fullerene Dyads A novel chlorinatozinc‐fullerene dyad 18 was synthesized to model the photosynthetic reaction center. The synthetic key step for the formation of the dyad 18 is an unusual one‐pot reaction of the (sulfolenobilinato)nickel rac‐ 16a , b with concomitant generation of the chlorin macrocycle and linkage to the [5,6]fullerene‐C60Ih. This one‐pot reaction is a complex cascade of single reaction steps with a total yield of 32% and an average yield of 83% for the individual steps. The chlorinatozinc‐fullerene dyad is so far one of three examples that contain chlorin moieties, the chromophores in naturally occurring photosynthetic systems.  相似文献   

7.
A highly convergent free radical coupling of alkyl iodides and oximes, mediated by bis(trimethylstannyl) benzopinacolate (8), has been utilized to prepare a series of dimeric nucleosides as mimics of natural nucleic acids. The systematic optimization of the reaction conditions allowed for the single-step conversion of the appropriate iodides and oximes into the 2'-deoxy dimers 9 in moderate to excellent yields. For example, the reaction of 3'-deoxy-3'-iodo-5'-(triphenylmethyl)thymidine (6a) with 3'-O-(tert-butyldiphenylsilyl)-5'-O-(methyleneimino)thymidine (7a) in the presence of 8 in degassed benzene gave an 81% yield of 3'-de(oxyphosphinico)-3'-(methyleneimino)-5'-O-(triphenylmethyl)thymidylyl-(3'-->5')-3'-O-(tert-butyldiphenylsilyl)thymidine (9a). Similarly prepared were dimers containing both pyrimidine (thymine, 5-methylcytosine) and purine (adenine, guanine) bases. The reaction was highly stereoselective, giving only a single dimeric species having the ribo-configuration of the newly introduced C-3'-branched methylene moiety. Also prepared were dimers 16, incorporating 2'-O-methyl ribonucleosides in both halves of the dimer. This required the synthesis of 3'-deoxy-3'-iodo-2'-O-methyl nucleosides 12 as well as 2'-O-methyl-5'-O-methyleneimino nucleosides 15. For example, 5'-O-(tert-butyldiphenylsilyl)-3'-deoxy-3'-iodo-2'-O-methyl-5-methyluridine (12e) was prepared in 80% yield by displacement of the corresponding triflate with Bu(4)NI. Also prepared were the suitably protected 3'-deoxy-3'-iodo adenosine and guanosine derivatives. Compounds 15 were prepared in high yield by a regioselective Mitsunobu reaction to give the corresponding 5'-O-phthalimido nucleosides 13, which were subsequently converted to the requisite oximes 15. In the 2'-O-methyl series, the pinacolate coupling reaction proceeded with efficiency equal to that observed for the 2'-deoxy series 9, but with slightly less stereoselectivity, giving predominantly the C-3'ribo products 16, contaminated with 5-25% of the epimeric material. Mixed base dimers containing both pyrimidine and purine bases at all possible positions, including purine-purine dimers were prepared. The hydroxylamine or methyleneimino (MI) backbone of several representative dimers so prepared was converted via methylation to give the corresponding methylenemethylimino (MMI)-linked compounds, which are novel phosphate surrogates for use in antisense oligonucleotides.  相似文献   

8.
[reaction: see text] Carbohydrates and nucleosides containing a phosphate at the less-hindered primary hydroxyl group are often prepared using a protection/deprotection strategy. Herein we report that the phosphoramidite method can be used to selectively incorporate phosphorus at the primary hydroxyl group of O-unprotected carbohydrates and nucleosides; in situ oxidation of the resulting phosphite triester yields the phosphate triester.  相似文献   

9.
A beta-triphosphitylating reagent was subjected to reaction with aminomethyl polystyrene resin-bound p-acetoxybenzyl alcohol to yield the corresponding polymer-bound beta-triphosphitylating reagent. The solid-phase reagent was reacted with unprotected nucleosides (e.g., 3'-azido-3'-deoxythymidine, cytidine, thymidine, uridine, inosine, or adenosine) in the presence of 1H-tetrazole. Polymer-bound nucleosides underwent oxidation with t-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and the acidic cleavage, respectively, to afford only monosubstituted 5'-O-beta-triphosphorylated nucleosides.  相似文献   

10.
A stereospecific high-yield glycosylation of preformed fully aromatic pyrroles has been accomplished for the first time. Reaction of the sodium salt of pyrrole-2-carbonitrile ( 1a ) and pyrrole-2,4-dicarbonitrile ( 1b ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 2 ) gave exclusively the corresponding blocked nucleosides with β-anomeric configuration 3a and 3b , which on deprotection gave 1-(2-deoxy-β-D-erythro-pentofuranosyl) derivatives of 1a ( 3c ) and 1b ( 3d ). Functional group transformation of 3c and 3d provided a number of 2-monosubstituted 4a-c and 2,4-disubstituted 4d-f derivatives of 1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrrole. Similar glycosylation of the sodium salt of 1a and 1b with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 5 ) and further functional group transformation of the intermediate blocked nucleosides 6a and 6b provided 1-β-D-arabinofuranosyl derivatives of pyrrole-2-carboxamide ( 7b ) and pyrrole-2,4-dicarboxamide ( 7d ). The synthetic utility of this glycosylation procedure for the preparation of 1-β-D-ribofuranosylpyrrole-2-carbonitrile ( 12 ) has also been demonstrated by reacting the sodium salt of 1a with 1-chloro-2,3-O-isopropylidene-5-O-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 10 ) and subsequent deprotection of the blocked intermediate 11 . This study provided a convenient route to the preparation of aromatic pyrrole nucleosides.  相似文献   

11.
Allyl aryl sulfides 1 and 5 were shown to undergo an imidation/[2,3]-sigmatropic rearrangement reaction upon treatment with N-tert-butyloxycarbonyl azide (BocN3) and catalytic amounts of FeCl2 in CH2Cl2. The N-Boc-protected N-allyl sulfenamides 3 and 21 were obtained in yields between 48 and 75% (12 examples). Whereas the reaction is well suited for the transformation of alpha-unbranched sulfides to alpha-branched sulfenamides, the enantiomerically pure alpha-branched sulfides 10 and 13 reacted sluggishly. The corresponding sulfenamides 22 and 23 were obtained in only moderate enantiomeric excess (36-39% ee). A reaction mechanism is proposed that postulates the intermediacy of an N-Boc-substituted Fe(IV)-nitrene complex 14 acting as the imidation reagent in the catalytic cycle. Possible side reactions are discussed. The benzenesulfenamides 3 were further converted into N-Boc-N-allylamines 4 by removal of the phenylsulfanyl group. Bu3SnH in benzene was found to be the reagent of choice for the deprotection of alpha-branched amines that bear a secondary allyl substituent (five examples, 71-93% yield). This method failed for the alpha-branched amines 3i-k with a tertiary allyl substituent. The phenylsulfanyl group was finally removed with P(OEt)3/NEt3 in CH2Cl2 (three examples, 43-62% yield).  相似文献   

12.
The glycosylation of indazolyl anions derived from 4a , b with 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) is described. The reaction was Stereoselective – exclusive β-D -anomer formation – but regioisomeric N1- and N2-(2′-deoxy-β-D -ribofuranosides) (i.e. 6a and 7a , resp., and 6b and 7b , resp.) were formed in about equal amounts. They were deprotected to yield 8a , b and 9a , b . Compound 1 , related to 2′-deoxyadenosine ( 3 ), and its regioisomer 2 were obtained from 8b and 9b , respectively, by catalytic hydrogenation. The anomeric configuration as well as the position of glycosylation were determined by 1D NOE-difference spectroscopy. The first protonation site of 1 and 2 was found to be the NH2 group. The N-glycosylic bond of 1H-indazole N1-(2′-deoxyribofuranosides) is more stable than that of the parent purine nucleosides. Compound 1 is no substrate for adenosine deaminase.  相似文献   

13.
The Pd(0)-catalyzed coupling reaction of β-5-iodo-2′-deoxy-3′,5′-di-O-acetyluridine with various heteroaryltrimethylstannyl compounds gave the corresponding β-5-heteroaryl-2′-deoxy-3′,5′-di-O-acetyluridines in moderate yields. This direct coupling approach for nucleosides represented an interesting alternative to the 5-heteroaryl functionalization of pyrimidines followed by the Hilbert-Johnson glycosylation reaction which often yields mixtures of the α and β anomers.  相似文献   

14.
The effect of lipid composition on the distribution of free radical oxidation products derived from arachidonic acid (20:4) esters has been studied in vitro and in vivo. Pro-inflammatory prostaglandin (PG) F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo and in vitro by the free radical-catalyzed peroxidation of arachidonic acid. Controlled free radical oxidation of mixtures of fatty acid esters in vitro showed that the formation of IsoPs from arachidonate is dramatically influenced by the presence of other fatty acid esters in the reaction mixture. Thus, three lipid mixtures containing the same arachidonate concentration but different amounts of other fatty esters (16:0; 18:1; 18:2; 20:5, and 22:6) were oxidized, and the product yields were determined by GC and LC/MS/MS analysis. The yield of F2-IsoP formed after 1 h of oxidation was 18% (based on arachidonate consumed) for mixtures containing arachidonate as the only oxidizable PUFA, but yields of these biologically active compounds dropped to 6% in polyunsaturated fatty acid (PUFA) mixtures typical of those found in tissues of fish oil-fed animals. F2-IsoP levels were also monitored in the livers of mice on diets supplemented with eicosapentaenoic acid (C20:5 omega-3; EPA), the PUFA most abundant in fish oil. While the level of arachidonic acid present in livers was not significantly different from that in control animals, levels of IsoPs in the liver were reduced in the EPA-fed mice compared to those in controls under conditions of oxidative stress (60 +/- 25% reduction, n = 5) or at baseline (48 +/- 14% reduction, n = 5). These results suggest that dietary omega-3 PUFAs may influence the formation of bio-active peroxidation products derived from omega-6 PUFAs by channeling the free radical pathway away from the F2-IsoPs.  相似文献   

15.
Four classes of phosphitylating reagents were subjected to reactions with aminomethyl polystyrene resin-bound p-acetoxybenzyl alcohol to yield the corresponding polymer-bound mono-, di-, tri-, and tetraphosphitylating reagents. The solid-phase reagents were reacted with unprotected nucleosides (e.g., thymidine, adenosine, 3'-azido-3'-deoxythymidine, cytidine, or inosine) in the presence of 5-(ethylthio)-1H-tetrazole. Polymer-bound nucleosides underwent oxidation with tert-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and the acidic cleavage, respectively, to afford 5',5'-dinucleoside mono-, di-, tri-, and tetraphosphodiesters in 59-78% yield.  相似文献   

16.
Nucleobase-anion glycosylation (KOH, tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1), MeCN) of the pyrrolo[2,3-d]pyrimidines 4a – d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribo-furanosyl chloride ( 5 ) gave the protected β-D -nucleosides 6a – d stereoselectively (Scheme 1). Contrary, the β-D -halogenose 8 yielded the corresponding α-D -nucleosides ( 9a and 9b ) apart from minor amounts of the β-D -anomers. The deprotected nucleosides 10a and 11a were converted into 4-substituted 2-aminopyrrolo[2,3-d]-pyrimidine β-D -ribofuranosides 1 . 10c , 12 , 14 , and 16 and into their α-D -anomers, respectively (Scheme 2). From the reaction of 4b with 5 , the glycosylation product 7 was isolated, containing two nucleobase moieties.  相似文献   

17.
Several N-5 ribofuranosyl-2,4-disubstituted pyrrolo[3,2-d]pyrimidine (9-deazapurine) nucleosides were prepared by the single phase sodium salt glycosylation of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine ( 3 ) using 1-chloro-2,3-O-isopropylidene-5-O-(t-butyl)dirnethylsilyl-α-D-ribofuranose ( 2 ). Use of 2 for the glycosylation avoided the formation of “orthoamide” products 1 and provided an excellent yield of the β nucleoside, 2,4-dichloro-5-[2,3-O-isopropylidene-5-O-(t-butyl)dimethylsilyl-β-D-ribofuranosyl]-5H-pyrrolo[3,2-d]pyrimidine ( 4 ), along with a small amount of the corresponding α anomer, 5 . Compound 4 served as the versatile intermediate from which the N-7 ribofuranosyl analogs of the naturally-occurring purine nucleosides adenosine, inosine and guanosine were synthesized. Thus, controlled amination of 4 followed by sugar deprotection and dehalogenation yielded the adenosine analog, 4-amino-5-β-D-ribofuranosyl-5H-pyrrolo[3,2-d]pyrimidine ( 8 ) as the hydrochloride salt. Base hydrolysis of 4 followed by deprotection gave the 2-chloroinosine analog, 10 , and subsequent dehalogenation provided the inosine analog, 5-β-D-ribofuranosyl-5H-pyrrolo[3,2-d]-pyrimidin-4(3H)-one ( 11 ). Amination of 10 furnished the guanosine analog, 2-amino-5-β-D-ribofuranosyl-5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one ( 12 ). Finally, the α anomer in the guanosine series, 16 , was prepared from 5 by the same procedure as that used to prepare 12 . The structural assignments were made on the basis of ultraviolet and proton nmr spectroscopy. In particular, the isopropylidene intermediates 9 and 14 were used to assign the proper configuration as β and α, respectively, according to Imbach's rule.  相似文献   

18.
The synthesis of 2- and 6-trifluoromethylated purines and 1-deazapurines was performed by formal [3 + 3]-cyclization reactions of 5-aminoimidazoles with a set of trifluoromethyl-substituted 1,3-CCC- and 1,3-CNC-dielectrophiles. The corresponding fluorinated nucleosides were synthesized by glycosylation of 9-unsubstituted purines and 1-deazapurines with peracetylated β-ribose, β-glucose, and rhamnose and subsequent deprotection. These scaffolds can be considered as potential inhibitors of adenosine deaminase (ADA) and inosine monophosphate dehydrogenase (IMPDH) enzymes.  相似文献   

19.
Branched oligosaccharide lycotetraose, beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranose, is a key constituent of many steroidal saponins, including glycoalkaloid alpha-tomatine, which is involved in protection of plants from invading pathogens. A new synthesis of the methyl beta-lycotetraoside () is described. Key steps of the synthesis include two successive glycosylation reactions of disaccharide acceptor methyl (4,6-O-benzylidene-3-O-p-methoxybenzyl-beta-D-glucopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-galactopyranoside with readily available benzoylated trichloroacetimidates of alpha-D-glucopyranose and alpha,beta-D-xylopyranose. This scheme allows sequential glycosylation in one-pot on account of the convenient in situ removal of a p-methoxybenzyl protecting group under the acid conditions of the first glycosylation step. Following deprotection, tetrasaccharide was obtained in 19% yield over eight steps.  相似文献   

20.
A convergent, enantioselective synthetic route to the natural product neocarzinostatin chromophore (1) is described. Synthesis of the chromophore aglycon (2) was targeted initially. Chemistry previously developed for the synthesis of a neocarzinostatin core model (4) failed in the requisite 1,3-transposition of an allylic silyl ether when applied toward the preparation of 2 with use of the more highly oxygenated substrates 27 and 54. An alternative synthetic plan was therefore developed, based upon a proposed reduction of the epoxy alcohol 58 to form the aglycon 2, a transformation that was achieved in a novel manner, using a combination of the reagents triphenylphosphine, iodine, and imidazole. The successful route to 1 and 2 began with the convergent coupling of the epoxydiyne 15, obtained in 9 steps (43% overall yield) from D-glyceraldehyde acetonide, and the cyclopentenone (+)-14, prepared in one step (75-85% yield) from the prostaglandin intermediate (+)-16, affording the alcohol 22 in 80% yield and with > or =20:1 diastereoselectivity. The alcohol 22 was then converted into the epoxy alcohol 58 in 17 steps with an average yield of 92% and an overall yield of 22%. Key features of this sequence include the diastereoselective Sharpless asymmetric epoxidation of allylic alcohol 81 (98% yield); intramolecular acetylide addition within the epoxy aldehyde 82, using Masamune's lithium diphenyltetramethyldisilazide base (85% yield); selective esterification of the diol 84 with the naphthoic acid 13 followed by selective cleavage of the chloroacetate protective group in situ to furnish the naphthoic acid ester 85 in 80% yield; and elimination of the tertiary hydroxyl group within intermediate 88 using the Martin sulfurane reagent (79% yield). Reductive transposition of the product epoxy alcohol (58) then formed neocarzinostatin chromophore aglycon (2, 71% yield). Studies directed toward the glycosylation of 2 focused initially on the preparation of the N-methylamino --> hydroxyl replacement analogue 3, an alpha-D-fucose derivative of neocarzinostatin chromophore, formed in 42% yield by a two-step Schmidt glycosylation-deprotection sequence. For the synthesis of 1, an extensive search for a suitable 2'-N-methylfucosamine glycosyl donor led to the discovery that the reaction of 2 with the trichloroacetimidate 108, containing a free N-methylamino group, formed the alpha-glycoside 114 selectively in the presence of boron trifluoride diethyl etherate. Subsequent deprotection of 114 under mildly acidic conditions then furnished the labile chromophore (1). The synthetic route was readily modified for the preparation of singly and doubly (3)H- and (14)C-labeled 1, compounds unavailable by other means, for studies of the mechanism of action of neocarzinostatin in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号