首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss semiclassical quantization of circular pulsating strings in \( \text {AdS}_3 \times \text {S}^3 \) background with and without the Neveu-Schwarz–Neveu-Schwarz (NS–NS) flux. We find the equations of motion corresponding to the quadratic action in bosonic sector in terms of scalar quantities and invariants of the geometry. The general equations for studying physical perturbations along the string in an arbitrary curved spacetime are written down using covariant formalism. We discuss the stability of these string configurations by studying the solutions of the linearized perturbed equations of motion.  相似文献   

2.
A fundamental tenet of general relativity is geodesic motion of point particles. For extended objects, however, tidal forces make the trajectories deviate from geodesic form. In fact Mathisson, Papapetrou, and others have found that even in the limit of very small size there exists a residual curvature-spin force. Another important physical case is that of field theory. Here the ray (WKB) approximation may be used to obtain the equation of motion. In this article I consider an alternative procedure, the proper time translation operator formalism, to obtain the covariant Heisenberg equations for the quantum velocity, momentum, and angular momentum operators for the case of spinor fields. I review the flat spacetime results for Dirac particles in Yang-Mills fields, where we recover the Lorentz force. For curved spacetime I find that the geodesic equation is modified by an additional term involving the spin tensor, and the parallel transport equation for the momentum is modified by an additional term involving the curvature tensor. This curvature term is the Lorentz force of the gravitational field. The main result of this article is that these equations are exactly the (symmetrized) Mathisson-Papapetrou equations for the quantum operators. Extension of these results to the case of spin-one fields may be possible by use of the KDP formalism.  相似文献   

3.
The first paper in this series introduced a new, manifestly covariant approach to non-equilibrium statistical mechanics in classical general relativity. The object of this second paper is to apply that formalism to the evolution of a collection of particles that interact via linear fields in a fixed curved background spacetime. Given the viewpoint adopted here, the fundamental objects of the theory are a many-particle distribution function, which lives in a many-particle phase space, and a many-particle conservation equation which this distribution satisfies. By viewing a composite N-particle system as interacting one- and (N ? 1)-particle subsystems, one can derive exact coupled equations for appropriately defined reduced one- and (N ? 1)-particle distribution functions. Alternatively, by treating all the particles on an identical footing, one can extract an exact closed equation involving only the one-particle distribution. The implementation of plausible assumptions, which constitute straightforward generalizations of standard non-relativistic “kinetic approximations”, then permits the formulation of an approximate kinetic equation for the one-particle distribution function. In the obvious non-relativistic limit, one recovers the well-known Vlasov-Landau equation. The explicit form for the relativistic expression is obtained for three concrete examples, namely, interactions via an electromagnetic field, a massive scalar field, and a symmetric second rank tensor field. For a large class of interactions, of which these three examples are representative, the kinetic equation will admit a relativistic Maxwellian distribution as an exact stationary solution; and, for these interactions, an H-theorem may be proved.  相似文献   

4.
《Physics letters. [Part B]》1987,198(2):156-160
We evaluate the wave function of the universe for a de Sitter minisuperspace with inhomogeneous matter perturbations from a massive scalar field. From the Wheeler-DeWitt equation, we derive Schrödinger equations for the matter modes. We show that the matter part of the Hartle-Hawking wave function is the euclidean vacuum state of quantum field theory in curved spacetime.  相似文献   

5.
The inclusion of a flat metric tensor in gravitation permits the formulation of a gravitational stress-energy tensor and the formal derivation of general relativity from a linear theory in flat spacetime. Building on the works of Kraichnan and Deser, we present such a derivation using universal coupling and gauge invariance.Next we slightly weaken the assumptions of universal coupling and gauge invariance, obtaining a larger "slightly bimetric" class of theories, in which the Euler-Lagrange equations depend only on a curved metric, matter fields, and the determinant of the flat metric. The theories are equivalent to generally covariant theories with an arbitrary cosmological constant and an arbitrarily coupled scalar field, which can serve as an inflaton or dark matter.The question of the consistency of the null cone structures of the two metrics is addressed.  相似文献   

6.
A survey is presented of the essential principles for formulating relativistic wave equations in curved spacetime. The approach is relatively simple and avoids much of the philosophical debate about covariance principles, which is also indicated. Hypercomplex numbers provide a natural language for covariance symmetry and the two important kinds of covariant derivative.  相似文献   

7.
We develop a general method for constructing curved traversable wormholes in (2+1)-dimensional spacetime, by generating surfaces of revolution around smooth curves. Application of this method to a straight line gives the usual spherically symmetric wormholes. The physics behind (2+1)-d curved traversable wormholes is discussed based on solutions to the Einstein field equations when the tidal force is zero. The Einstein field equations are found to reduce to one equation whereby the mass-energy density varies linearly with the Ricci scalar, which signifies that our (2+1)-d curved traversable wormholes are supported by dust of ordinary and exotic matter without radial tension nor lateral pressure. With this, two examples of (2+1)-d curved traversable wormholes: the helical wormhole and the catenary wormhole, are constructed and we show that there exist geodesics through them supported by non-exotic matter. This general method is applicable to our (3+1)-d spacetime.  相似文献   

8.
It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation.  相似文献   

9.
田贵花  王世坤  钟树泉 《中国物理》2007,16(10):2889-2893
The stability problem of the Rindler spacetime is carefully studies by using the scalar wave perturbation. Using two different coordinate systems, the scalar wave equation is investigated. The results are different in the two cases. They are analysed and compared with each other in detail. The following conclusions are obtained: (a) the Rindler spacetime as a whole is not stable; (b) the Rindler spacetime can exist stably only as part of the Minkowski spacetime, and the Minkowski spacetime can be a real entity independently; (c) there are some defects for the scalar wave equation written by the Rindler coordinates, and it is unsuitable for the investigation of the stability properties of the Rindler spacetime. All these results may shed some light on the stability properties of the Schwarzschild black hole. It is natural and reasonable for one to infer that: (a) perhaps the Regge--Wheeler equation is not sufficient to determine the stable properties; (b) the Schwarzschild black hole as a whole might be really unstable; (c) the Kruskal spacetime is stable and can exist as a real physical entity; whereas the Schwarzschild black hole can occur only as part of the Kruskal spacetime.  相似文献   

10.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   

11.
Scroll waves are an important example of self-organisation in excitable media. In cardiac tissue, scroll waves of electrical activity underlie lethal ventricular arrhythmias and fibrillation. They rotate around a topological line defect which has been termed the filament. Numerical investigation has shown that anisotropy can substantially affect the dynamics of scroll waves. It has recently been hypothesised that stationary scroll wave filaments in cardiac tissue describe geodesics in a space whose metric is the inverse diffusion tensor. Several computational studies have validated this hypothesis, but until now no quantitative theory has been provided to study the effects of anisotropy on scroll wave filaments. Here, we review in detail the recently developed covariant formalism for scroll wave dynamics in general anisotropy and derive the equations of motion of filaments. These equations are fully covariant under general spatial coordinate transformations and describe the motion of filaments in a curved space whose metric tensor is the inverse diffusion tensor. Our dynamic equations are valid for thin filaments and for general anisotropy and we show that stationary filaments obey the geodesic equation. We extend previous work by allowing spatial variations in the determinant of the diffusion tensor and the reaction parameters, leading to drift of the filament.  相似文献   

12.
We give all exact solutions of the Einstein–Gauss–Bonnet Field Equations coupled with a scalar field in four dimensions under certain assumptions. The main assumption we make in this work is to take the second covariant derivative of the coupling function proportional to the spacetime metric tensor. Although this assumption simplifies the field equations considerably, to obtain exact solutions we assume also that the spacetime metric is conformally flat. Then we obtain a class of exact solutions.  相似文献   

13.
Beltrami-de Sitter时空中标量和旋量粒子的量子理论   总被引:3,自引:0,他引:3       下载免费PDF全文
李光仪  郭汉英 《物理学报》1982,31(11):1501-1510
参照在Minkowski时空中,从粒子的相对论性经典理论过渡到量子理论,建立标量粒子和旋量粒子的相对论性波动方程的方案,在Beltrami-de Sitter时空中建立了de Sitter不变的标量粒子和旋量粒子的相对论性量子力学的基本方程,它们恰恰分别是Beltrami-de Sitter时空中的Klein-Gordon方程和Dirac方程。在Beltrami-anti de Sitter时空的同时类空超曲面簇上求解了这些方程,得到了分立的本征值和相应的本征函数。 关键词:  相似文献   

14.
A new procedure for obtaining explicit solutions to Maxwell's equations in curved spaces is presented. The problem is reduced to solving one linear scalar wave equation. The formulation includes astrophysically important cosmological models, neutron star and black hole space-times.  相似文献   

15.
We examine Galilei-invariant linear wave equations in a non-commutative phase space. Specifically, we establish and solve the Galilean covariant Duffin-Kemmer-Petiau equation for spin-0 fields in a harmonic oscillator potential. We obtain these wave equations with a Galilean covariant approach, based on a (4+1)-dimensional manifold with light-cone coordinates followed by a reduction to a (3+1)-dimensional spacetime. We find the exact wave functions and their energy levels, and we examine the effects of non-commutativity.  相似文献   

16.
In the paper [R.-G. Cai, L.-M. Cao, Y.-P. Hu, arXiv: 0809.1554], the scalar particles' Hawking radiation from the apparent horizon of Friedmann–Robertson–Walker (FRW) universe was investigated by using the tunneling formalism. They obtained the Hawking temperature associated with the apparent horizon, which was extensively applied in investigating the relationship between the first law of thermodynamics and Friedmann equations. In this Letter, we calculate fermions' Hawking radiation from the apparent horizon of FRW universe via tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in FRW spacetime background, the radiation spectrum and Hawking temperature of apparent horizon are correctly recovered, which supports the arguments presented in the paper [R.-G. Cai, L.-M. Cao, Y.-P. Hu, arXiv: 0809.1554].  相似文献   

17.
Curved multi-dimensional space-times (5D and higher) are constructed by embedding them in one higher-dimensional flat space. The condition that the embedding coordinates have a separable form, plus the demand of an orthogonal resulting space-time, implies that the curved multi-dimensional space-time has 4D de-Sitter subspaces (for constant extra-dimensions) in which the 3D subspace has an accelerated expansion. A complete determination of the curved multi-dimensional spacetime geometry is obtained provided we impose a new type of “equivalence principle”, meaning that there is a geodesic which from the embedding space has a rectliniar motion. According to this new equivalence principle, we can find the extra-dimensions metric components, each curved multi-dimensional spacetime surface’s equation, the energy-momentum tensors and the extra-dimensions as functions of a scalar field. The generic geodesic in each 5D spacetime are studied: they include solutions where particle’s motion along the extra-dimension is periodic and the 3D expansion factor is inflationary (accelerated expansion). Thus, the 3D subspace has an accelerated expansion.  相似文献   

18.
This paper gives a covariant formalism enabling investigation of the possibility of change of signature in classical General Relativity, when the geometry is that of a Robertson-Walker universe. It is shown that such changes are compatible with the Einstein field equations, both in the case of a barotropic fluid and of a scalar field. A criterion is given for when such a change of signature should take place in the scalar field case. Some examples show the kind of resulting exact solutions of the field equations.  相似文献   

19.
K. Ladnyi 《Annals of Physics》1980,130(2):427-460
The spinor Bethe-Salpeter equation is investigated for tightly bound fermion pairs. The covariant interaction kernel contains contributions of vector and axial-vector gluons within the framework of the Stückelberg formalism. The free gluon propagators of the strict ladder approximation are replaced by a convenient spectral form. This generalized ladder model can be extended to a large class of gauge field theories by specifying the spectral functions. The model-independent O(4) analysis of the Wick-rotated wave functions is carried out by using a complete set of four-dimensional scalar, vector, and tensor spherical harmonics. At vanishing center-of-mass energy, the radial Bethe-Salpeter equations can be classified in six disconnected sectors. All these equations are recorded in a general form which provides a study of the gauge dependence of the wave functions at short distances. Illustrative calculations are based on a simple Abelian field theory. In two Goldstein equations the leading singular term of the kernel may be absent by cancellation. In addition, one obtains a generalized Goldstein equation in which the kernel includes a gauge-independent marginally singular term. It is discussed how corrections of the large-distance behavior of the singular Goldstein kernel can lead to normalizable bound-state solutions without introducing a short-distance cutoff. Exact and numerical solutions are presented by using a simple parametrization of the kernel. In other sectors, the noncanonical angular behavior of the solutions may be avoided by prescribing a complex mass for the Stückelberg ghosts.  相似文献   

20.
We study the Dirac equation in a spacetime that represents the nonlinear superposition of the Schwarzschild solution to an external, stationary electromagnetic field. The set of equations representing the uncharged Dirac particle in the Newman–Penrose formalism is decoupled into a radial and an angular parts. We obtain exact analytical solutions of the angular equations. We manage to obtain the radial wave equations with effective potentials. Finally, we study the potentials by plotting them as a function of radial distance and examine the effect of the twisting parameter and the frequencies on the potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号